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Abstract

GenesisL1 Forest is a browser-only “model studio” that trains gradient-boosted decision tree (GBDT)
ensembles locally, serializes them into a compact binary format, deploys them on the GenesisL1
network as ERC-721 “Model NFTs”, and supports deterministic on-chain inference through a
specialized runtime smart contract. This document is intentionally hybrid: Part I is written in the
style of a scientific paper (design goals, algorithmic choices, and formal specifications), and Part II
is written as technical documentation (developer workflows, contract APIs, and implementation
details). Throughout, we emphasize constraints imposed by Layer-1 execution (gas, determinism,
data availability), and we show how GenesisL1 Forest uses code-as-data chunk contracts and
fixed-point arithmetic to make on-chain inference practical.
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Chapter 1

Introduction

1.1 What is GenesisL1 Forest?
GenesisL1 Forest (“Forest” for short) is a self-contained web application that runs entirely in the
browser and connects to the GenesisL1 network (chain ID 29). It supports:

• training fixed-depth gradient-boosted decision trees (GBDTs) for regression, binary classifica-
tion, multiclass classification, and multilabel classification;

• serializing trained models into a compact binary format (GL1F v1 and v2);

• deploying model bytes to an L1 chain using chunk contracts whose runtime bytecode begins
with GL1C;

• minting a corresponding ERC-721 token (“Model NFT”) holding human-facing metadata; and

• performing deterministic inference on-chain via a dedicated runtime contract.

Terminology
In this document, “forest” refers to an ensemble of decision trees (the classic machine-learning
meaning), and GenesisL1 refers to the EVM-compatible Genesis L1 network (chainId
29). Chain parameters and common wallet configuration are publicly listed by community
registries.[9]

1.2 Why does this matter? (Importance)
Deploying ML models on-chain is rarely practical with state-of-the-art neural networks, but tree
ensembles occupy a sweet spot: inference is a small set of integer comparisons and additions. This
makes them attractive for L1 use cases that require:

• verifiability: anyone can reproduce inference from public model bytes and public input
features;

• availability: model parameters remain accessible as long as the chain is accessible;

• composability: other contracts can call into the model runtime and build applications on
top;
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• market mechanisms: ownership, licensing, and paid access can be expressed as smart
contracts; and

• education and auditability: model structure is inspectable, and the runtime behavior is
deterministic.

Forest specifically targets the intersection of (i) reproducible inference, (ii) lightweight models, and
(iii) a developer experience that does not require local ML toolchains.

1.3 Contributions and scope
This paper/documentation contributes:

1. a formal specification of the GL1F binary formats used by Forest;

2. a reference architecture for storing large immutable model blobs as contract bytecode (code-
as-data), akin to the SSTORE2 pattern;[7]

3. an on-chain inference procedure that supports paywalled usage without relying on spoofable
eth_call caller addresses;[5, 6]

4. an end-to-end workflow: dataset ingestion → in-browser training → on-chain deployment →
inference and marketplace.
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Chapter 2

Background

2.1 Gradient boosting decision trees
Gradient boosting constructs an additive model of the form

FM (x) = F0(x) +
M∑

m=1
ν fm(x), (2.1)

where each fm is a weak learner (here: a fixed-depth decision tree), ν is a learning rate, and each
new tree is fit to the negative gradient of a loss function. The classical formulation and many
practical variants are described by Friedman (2001).[1]

In Forest, trees are complete binary trees of a fixed depth d. Each internal node stores a feature
index f and a threshold τ ; each leaf stores a value. Inference is a deterministic traversal based on
comparing the input feature value to the node threshold.

2.2 Why fixed-depth?
Variable-depth trees encode structure compactly, but fixed-depth trees simplify on-chain decoding:

• the number of internal nodes is 2d − 1, and leaves 2d;

• array indexing is arithmetic; no pointers are needed;

• byte offsets become compile-time-like expressions, enabling efficient EXTCODECOPY-based reads.

2.3 On-chain constraints
Smart-contract computation is constrained by gas costs, determinism, and limited access to external
data. Two constraints are especially relevant:

• Contract code size limit: EIP-170 caps runtime code size at 24,576 bytes on Ethereum
mainnet and many compatible chains.[4]

• RPC call semantics: eth_call accepts an optional from field, meaning off-chain callers
can simulate calls “as if” from arbitrary addresses.[6]

Forest’s design uses these constraints as primitives: the code size limit motivates chunking; spoofable
eth_call motivates signature-gated free inference for paid models.
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ForestRuntime
verifies signature

Caller
(anyone)

Owner/API key
signs typed data

Inference
(extcodecopy reads)

eth_call + packed features

EIP-712 sig

EIP-712 domain separation

Figure 2.1: Fixed-depth binary tree indexing used by Forest.
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Chapter 3

System Architecture

3.1 High-level overview
Forest consists of three layers:

1. Browser application: dataset ingestion, model training (WebWorker), visualization, pack-
aging, and deployment transactions.

2. Smart contracts: registry (metadata, pricing, access), NFT contract, marketplace, model
storage chunks, and on-chain runtime inference.

3. Genesis L1 network: an EVM-compatible chain (chainId 29) reachable via JSON-RPC
(e.g., https://rpc.genesisl1.org).[9]

Browser Studio
(training + UI)

GenesisL1 RPC
(JSON-RPC)

Genesis L1 chain
(chainId=29)

Smart contracts
Registry / NFT / Store / Runtime / Market

Chunk contracts
Runtime bytecode: GL1C || data

read/write tx + calls

extcodecopy

On-chain inference + storage

Figure 3.1: GenesisL1 Forest architecture: the browser performs training and deployment, while
inference and model availability are enforced on-chain.
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3.2 Model lifecycle
A model in Forest typically follows this lifecycle:

1. Train: user trains a GBDT on a dataset in the browser.

2. Serialize: model parameters are quantized into fixed-point integers and encoded as GL1F
bytes.

3. Store bytes: bytes are split into chunks; each chunk is deployed as a pointer contract (GL1C
magic) using the on-chain store.

4. Publish: a pointer-table contract referencing the chunks is deployed; the registry mints an
NFT with metadata and binds it to a model ID.

5. Infer: users call the runtime for view or paid inference (depending on pricing mode).

6. Trade: the NFT can be listed and sold; ownership affects fee-free privileges and access-key
control.

Train
(browser)

Serialize
GL1F

Chunk
GL1C

Register
+ NFT

Infer
(view/tx)

Trade
(market)

Figure 3.2: Model lifecycle in Forest: from in-browser training to on-chain inference and marketplace
trading.
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Chapter 4

Binary Formats and Storage

4.1 Chunk contracts (GL1C)
Forest stores model bytes on-chain by deploying contracts whose runtime bytecode is:

GL1C (4 bytes) || DATA (0..24,572 bytes)

This is a variant of the well-known “store-as-code” pattern (often called SSTORE2).[7]
EIP-170 limits runtime bytecode size to 24,576 bytes, motivating the maximum chunk payload

size of 24,572 bytes (reserving 4 bytes for the magic prefix).[4]

4.2 Pointer table
To address models larger than a single chunk, Forest stores a pointer table as another GL1C contract.
The table payload is a sequence of 32-byte words, each containing an address in its low 20 bytes
(left-padded with zeros). The runtime inference engine reads this table via EXTCODECOPY to locate
chunk addresses.

GL1C DATA: 32-byte words (addresses)

Pointer-table contract runtime code

GL1C DATA: model bytes slice

Chunk contract runtime code

Figure 4.1: Both the pointer table and the chunks are GL1C contracts. The runtime reads pointers
from the table and then reads model bytes from the chunks.

4.3 Model format GL1F v1 (scalar output)
The v1 format encodes regression and binary classification models with a single scalar logit/score
output. It begins with a 24-byte header and then stores M trees.
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Offset Field Notes

0..3 magic ASCII GL1F
4 version 1

6..7 nFeatures uint16 LE
8..9 depth uint16 LE

10..13 nTrees uint32 LE
14..17 baseQ int32 LE (fixed-point)
18..21 scaleQ uint32 LE (feature/value scale)

24.. trees see below

Table 4.1: GL1F v1 header. (Reserved bytes omitted for brevity.)

Each tree stores internal nodes followed by leaves. With depth d:

#internal = 2d − 1, (4.1)
#leaves = 2d, (4.2)

bytes/tree = (2d − 1) · 8 + 2d · 4. (4.3)

GL1F v=1 nFeat depth nTrees baseQ scaleQ trees...

v1 layout (bytes 0..23 header, then tree blocks)

Figure 4.2: GL1F v1 byte layout (schematic).

4.4 Model format GL1F v2 (vector output)
The v2 format supports multiclass and multilabel classification. It adds (i) an explicit number of
classes/labels and (ii) per-class base logits. Trees are stored class-major: all trees for class 0, then
class 1, and so on.

Offset Field Notes

0..3 magic ASCII GL1F
4 version 2

6..7 nFeatures uint16 LE
8..9 depth uint16 LE

10..13 treesPerClass uint32 LE
18..21 scaleQ uint32 LE
22..23 nClasses uint16 LE

24.. baseLogitsQ int32 LE × nClasses
... trees class-major blocks

Table 4.2: GL1F v2 header fields.
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4.5 Why fixed-point (Q) values?
Floating point is not available in Solidity. Forest uses int32 fixed-point representations:

• input features are packed as int32 little-endian values, representing x · scaleQ;

• thresholds and leaf values are stored in the same quantized scale;

• the runtime accumulates to an int256 to avoid overflow across many trees.
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Chapter 5

On-Chain Inference

5.1 Inference algorithm (scalar)
Inference for v1 models is straightforward: for each tree, traverse from the root to a leaf using
comparisons xf > τ . Then add the leaf value to the accumulator. Pseudocode:

Listing 5.1: Reference pseudocode for scalar inference (v1).
1 acc = baseQ
2 for t in 0.. nTrees -1:
3 idx = 0
4 for lvl in 0.. depth -1:
5 (f, thrQ) = node(t, idx)
6 xQ = featuresQ [f]
7 idx = (idx *2 + 2) if xQ > thrQ else (idx *2 + 1)
8 leafIndex = idx - (2^ depth - 1)
9 acc += leaf(t, leafIndex )

10 return acc

5.2 View inference versus paid inference
Forest supports pricing modes:

• mode 0: free; mode 1: tips (fee optional); mode 2: paid-required.

pricingMode
0 free / 1 tips / 2 paid

predictView / predictClassView
predictMultiView

predictTx / predictClassTx
predictMultiTx

predictOwnerView
predictAccessView

0,1
0,1,2

2 (and owners)

Tx fee enforcement:
if mode=2 and msg.value<feeWei,
only current NFT owner may call.

View authorization:
EIP-712 signature proves owner
or subscribed access key.

Figure 5.1: Which inference entrypoints are valid under each pricing mode.
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A key subtlety is that off-chain read calls can spoof the caller address: eth_call includes an
optional from field.[6] Therefore, paid-required models must not allow free view inference gated
solely by msg.sender. Forest uses two mechanisms:

1. an on-chain transaction path (predictTx) that enforces payment unless the current NFT
owner calls it;

2. an EIP-712 signature-gated view path (predictOwnerView / predictAccessView) that proves
authorization without relying on the spoofable call sender.[5]

ForestRuntime
verifies signature

Caller
(anyone)

Owner/API key
signs typed data

Inference
(extcodecopy reads)

eth_call + packed features

EIP-712 sig

EIP-712 domain separation

Figure 5.2: Signature-gated view inference prevents fee bypass via spoofed eth_call callers.

5.3 Complexity and gas intuition
For scalar v1 models, inference is O(M · d) comparisons plus O(M · d) byte reads for thresholds
and feature indices. Reads are performed from contract bytecode via EXTCODECOPY, avoiding SLOAD.
This can be substantially cheaper for medium-sized blobs than storing the entire model in standard
storage.[7]
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Chapter 6

Governance, Licensing, and Search

6.1 On-chain Terms and license
The registry records an active Terms-of-Service version and an active license identifier; deployments
must explicitly accept both. The default license is Creative Commons Attribution-ShareAlike 4.0
(CC BY-SA 4.0).[8]

6.2 Title-word search index
Forest maintains a simple on-chain inverted index mapping word hashes to token IDs. Search
performs an AND query by intersecting membership sets (optimized by scanning the first word list).
This supports discovery without requiring off-chain indexing infrastructure.

Title string Tokenizer
(lowercase + split)

keccak256(word)
→ wordHash

_wordTokens[wordHash]
tokenId[]

_wordHasToken[wordHash]
[tokenId] -> bool

_tokenWords[tokenId]
wordHash[]

AND search: select the first query word as the base list _wordTokens[w0].
For each tokenId in the base list, verify membership for the remaining words using
_wordHasToken[w][tokenId].

scan base list membership checks

cleanup on burn

Figure 6.1: On-chain title-word index used for discovery without off-chain indexing.
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Chapter 7

Limitations and Future Work

7.1 Limitations
• Model class: Only fixed-depth GBDTs are supported. This is intentional to keep inference

deterministic and compact.

• Feature scaling: Users must supply or accept a scaling factor scaleQ to avoid int32 overflow.

• Privacy: Inputs provided to on-chain transactions are public. Signature-gated view inference
can keep inputs off-chain, but off-chain callers still reveal inputs to their RPC provider.

• Expressiveness: Trees are trained in-browser with a pragmatic histogram split search; they
are not intended to compete with highly optimized libraries like XGBoost or LightGBM.[2, 3]

7.2 Possible extensions
• support for feature normalization metadata and standardized “model cards”;

• optional Merkle commitments to datasets and training hyperparameters;

• more granular access-control primitives and royalty standards.
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Part II

Technical Documentation
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Chapter 8

Quickstart

8.1 Local development
The repository is a static web application and must be served over HTTP (not file://) so module
imports work.

Listing 8.1: Serve locally using Python.
1 python3 -m http. server 8080
2 # open http :// localhost :8080/ forest .html

8.2 Network configuration
Forest targets Genesis L1 (EVM, chainId 29). Public registries list the chain ID and common RPC
endpoints.[9]
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Chapter 9

End-to-End Workflow

9.1 Dataset ingestion
Forest can ingest CSV files and infer label schemas for several tasks. Typical steps:

1. upload CSV; choose feature columns; choose label column(s);

2. perform numeric conversion and basic cleaning;

3. split into train/val/test with seeded shuffle; stratify for single-label classification.

9.2 Training
Training runs in a WebWorker and supports:

• regression with squared loss;

• binary classification with logistic loss;

• multiclass classification with softmax cross-entropy;

• multilabel classification with independent sigmoids.

Practical detail: scale selection
The create page chooses scaleQ to preserve precision while ensuring quantized values fit
comfortably in int32, with a safety headroom below 2,147,483,647.

9.3 Serialization and deployment
Deployment consists of N + 2 transactions for a model split into N chunks:

1. N transactions: write each model chunk to ModelStore.write (deploying GL1C pointer
contracts);

2. 1 transaction: write the pointer-table (32-byte pointers) as another GL1C contract;

3. 1 transaction: call ModelRegistry.registerModel to mint an NFT and store runtime pa-
rameters.
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Model bytes
(GL1F)

Split into
chunks

ModelStore.
write

(chunk i)
(repeat N)

ModelStore.
write

(pointer table)

ModelRegistry.
registerModel
(mint NFT)

Figure 9.1: Deployment pipeline used by the Create page.

Tx 1..N
Store.write
(chunk i)

Tx N+1
Store.write

(pointer table)

Tx N+2
Registry.registerModel

(mint NFT)

Events: each chunk write emits ChunkWritten(pointer,size);
the Create page parses logs to recover pointers, then packs them into the table (32 bytes each).

Figure 9.2: Transaction-level deployment sequence.
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Chapter 10

Contract Reference

This chapter summarizes the contract suite. Full source listings are included in the appendices.

10.1 ModelStore
Purpose: store immutable byte chunks as runtime code (GL1C || DATA). The write function
deploys a minimal pointer contract whose runtime code is exactly the stored bytes, respecting the
EIP-170 size limit.[4]

10.2 ModelRegistry
Purpose: register models, bind them to NFTs, manage pricing and inference enablement, manage
access plans, and maintain a title-word search index.

10.3 ForestRuntime
Purpose: read model bytes from chunk contracts and perform deterministic inference. Supports
scalar (v1), vector (v2), multiclass argmax helpers, paid tx inference, and signature-gated view
inference for owners and subscribed API keys.

10.4 ModelNFT and Marketplace
ModelNFT: ERC-721 token with on-chain metadata (title, description, icon, packed feature
schema). Marketplace: optional listing and purchase contract for Model NFTs.
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Chapter 11

Frontend Module Map

Forest is intentionally “no build step” for local use: ES modules load directly in the browser.

• src/create_page.js: dataset, training orchestration, deployment.

• src/train_worker.js: core training implementation.

• src/local_infer.js: local model decoding and inference.

• src/eth.js: provider + wallet state utilities.

• src/abis.js: contract ABIs.
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Chapter 12

Suite-Level Architecture and
Navigation

This chapter expands the original whitepaper with a suite-oriented perspective: rather than
viewing GenesisL1–Forestas a set of contracts and a model format only, we describe the full
end-user and developer workflow as implemented by the reference web application contained in
genesis_forest_suite_debug_plotly_blue_v5.zip. The goal is to document (i) what each UI
tab does, (ii) which on-chain and off-chain components it touches, and (iii) how training, heuristic
search, and feature scoring are realized in a reproducible, deterministic way.

12.1 Page map and responsibilities
The reference suite is a static web application with multiple top-level pages (“tabs” in the navigation
bar). Each page is a single HTML document that imports a dedicated JavaScript module under
src/. The navigation bar is rendered consistently across pages via src/ui_nav.js, which also
centralizes wallet connection state and exposes a unified “system configuration” (RPC endpoint and
contract addresses).

While each page is independent, they share:

• a system configuration (RPC URL + contract addresses) stored in browser local storage;

• a wallet state (address, chainId) broadcast through a custom DOM event;

• a debug dock (collapsible log console) implemented by src/debug_dock.js;

• common utilities (formatting, unit conversion, task labeling, feature metadata packing) in
src/common.js.

12.2 System configuration model
All pages interpret “the chain” through a JSON system object loaded by loadSystem() from
localStorage. The configuration includes:

• rpc: RPC endpoint used for read calls (eth_call);

• store: ModelStore contract address (chunk writes);
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Forest
Catalog

AI Store
Listings

My
Owned NFTs

Model
Details

& Inference

Create
Model Studio

Terms
License & ToS

open tokenId

open tokenId

open tokenId

mint /
open tokenId

Shared primitives: system config (RPC + addresses), wallet connect, debug dock, ABIs

Figure 12.1: Page map of the GenesisL1 Forest reference suite (shipped pages). “Model” is a
detail page reachable from catalog/search pages and from Create after minting. The dashed arrow
indicates that the active license and ToS version shown in Terms gates Create actions.

• registry: ModelRegistry address (model registration and metadata);

• nft: ModelNFT address (ERC-721 ownership and icon/features);

• runtime: ForestRuntime address (on-chain inference engine);

• market: ModelMarketplace address (listing/buying).

A key design choice is that the suite prefers the configured rpc for calls (reliability and consistent
gas limits for eth_call), but uses the browser wallet provider for signed transactions. This separation
reduces failures due to wallet providers that restrict large eth_call payloads.

12.3 Wallet event bus and cross-page consistency
The wallet module (src/eth.js) exports a small reactive state. When the wallet connects or the
chain changes, the suite dispatches the DOM event genesis_wallet_changed. Pages subscribe to
this event to refresh UI and enable/disable actions.

Operational implication. Pages never assume the user stays connected: every “write”
action re-checks the current wallet state (address and chainId) and fails early with
actionable messages.

12.4 Debug dock
The debug dock is a suite-wide observability component. It is intentionally simple—a text buffer
plus controls to collapse, clear, and copy logs. The dock also shows a coarse “state” label (e.g., idle,
training) and a connection summary (wallet address + chainId). Because it is a pure client-side
console, it is safe to run in untrusted contexts and can be embedded in static hosting.
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Debug Dock
State: idle/training/deploying Conn: wallet . . .
Controls: Copy Clear Collapse/Expand
Output: timestamped log lines (append-only)

Figure 12.2: Conceptual structure of the debug dock. The implementation is intentionally
browser-compatibility focused: it uses navigator.clipboard when available and falls back to
document.execCommand("copy") otherwise.
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Chapter 13

Forest Tab: The Model Catalog

The Forest tab (forest.html + src/forest_page.js) is the discovery layer for all registered
models. It provides a lightweight catalog UI with paging, keyword search, and optional filters by
NFT owner and model creator.

13.1 User-facing behavior
At a high level, the page renders a grid of model cards. Each card shows:

• model title and short description;

• task type (regression / binary / multiclass / multilabel);

• structural parameters (#features, #trees, depth, scale);

• pricing status (disabled/free/tips/paid) and fee;

• an icon (128 × 128 PNG) stored on-chain via ModelNFT.

Selecting a card navigates to the Model page with a tokenId query parameter.

13.2 Data plane: what contracts are queried
Forest is read-only. It queries:

1. Registry (ModelRegistry) for the authoritative model summary (inference enable flag,
pricing mode, fee, structural stats).

2. NFT (ModelNFT) for icon bytes and user-facing metadata.

3. Market (ModelMarketplace) optionally, to display current listing prices.

Because the icon is stored as bytes, the suite converts it to a PNG blob and uses an object URL.
This avoids needing external image hosting and keeps the catalog purely on-chain.
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13.3 Search and indexing
The primary search mechanism is a word-hash index in the registry (see Figure 6.1). The Forest UI
tokenizes the search box into lowercase words of length ≥ 2 and computes keccak256hashes. The
query is then executed via registry.searchTitleWords(wordHashes, page, pageSize).

Design trade-off. Word-hash search is robust to on-chain storage constraints: it avoids
storing large inverted indices, and it allows prefix-free matching by exact word equality.
However, it is not a semantic search: synonyms and typos are not matched unless the
title explicitly contains the queried word.

Forest additionally supports filtering by owner address and creator address. Owner filtering
uses the enumerable ERC-721 interface; creator filtering requires scanning because creator is stored
in the registry model struct and is not enumerable by creator in constant time.

13.4 Paging and performance considerations
Catalog pages are rendered in fixed-size batches (default 25). For large filters (e.g., creator scans),
the UI enforces a scan cap to avoid locking the browser. This is a deliberate stance: the reference
suite is a static web app and must remain responsive even on low-end devices.

Forest UI
(forest_page.js)

ModelRegistry
searchTitleWords

getModelSummary

ModelNFT
tokenIcon

tokenMetadata

ModelMarketplace
getListing
(optional)

word hashesicon bytes listing price

Figure 13.1: Read-path for rendering a page of Forest catalog cards. The UI merges registry
summaries with NFT metadata and (optionally) marketplace listing state.
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Chapter 14

AI Store Tab: Marketplace Surface

The AI Store tab (aistore.html + src/market_page.js) is a specialized view over the same
underlying registry: it shows only models currently listed for sale in the marketplace contract.

14.1 Listing semantics
A listing is not a registry attribute; it lives in the marketplace contract. This separation is intentional:

• registry remains the canonical model catalog and runtime configuration;

• marketplace contains optional liquidity features (list, delist, buy) and can be replaced/upgraded
independently;

• models can exist without ever being listed.

14.2 Query strategies
The AI Store view supports keyword search similar to Forest. When no query is provided, it simply
pages through the marketplace’s listing list. When a query is provided, it first asks the registry for
matching token IDs via word-hash search, and then filters that set by checking listing status in the
marketplace.

Engineering note. Search in a listing-only view is expensive if implemented as “scan
all listings and filter by title”. The suite instead uses registry search as the first-stage
filter.

14.3 Buy flow
Buying is a single transaction market.buy(tokenId) with msg.value equal to the listing price.
Ownership transfers to the buyer as an ERC-721 transfer. After the transaction is mined, the UI
refreshes listing status and owner address.
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Chapter 15

Model Tab: Inference, Pricing, and
Access Control

The Model page (model.html + src/model_page.js) is the operational core of the suite. It
supports:

• loading model metadata and runtime parameters from chain;

• performing inference via view calls or paid transactions depending on pricing mode;

• managing owner settings (pricing, recipient, inference enable);

• marketplace actions (list/unlist/buy);

• managing API access keys and subscription plans for paid models.

15.1 Model identity: tokenId vs modelId
The suite uses two identifiers:

• tokenId: ERC-721 token identifier (human-facing, used in URLs).

• modelId: keccak256hash of the serialized model bytes (content-addressed, used by the
runtime and registry for storage binding).

The Model page loads by tokenId and then asks the registry for the corresponding modelId
and storage pointers (table pointer, chunking parameters).

15.2 Feature packing and quantization
On-chain inference consumes a packed feature vector packedFeaturesQ.

• Each feature is quantized as qi = round(xi · scaleQ).

• Each qi is clamped to signed 32-bit range and encoded little-endian.

• The packed byte array is 4 · nfeatures bytes long.

This is the same quantization used in the model format described in Section 4.5. The suite
maintains consistency by always reading scaleQ from the registry summary before packing.
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15.3 Inference modes and pricing
The suite implements three pricing modes (Figure 5.1) and selects an execution path accordingly.

15.3.1 Mode 0: free view inference

When pricing mode is 0 (Free), any user can call the runtime view function (e.g., predictView) to
obtain a result without a transaction.

15.3.2 Mode 1: tips

When pricing mode is 1 (Tips), view inference remains enabled. Users may optionally send a
transaction with msg.value as a tip; the runtime emits an event containing the inference output
(because transactions cannot return values to the UI).

15.3.3 Mode 2: paid required

When pricing mode is 2 (Paid required), public view inference would allow fee bypass (because
eth_call cannot enforce payment). The suite therefore distinguishes three paid-required paths:

1. Paid transaction inference (anyone): predictTx with msg.value ≥ fee.

2. Owner-signed view inference (NFT owner): predictOwnerView with an EIP-712 signature
from the NFT owner address.

3. Access-key view inference (subscribers): predictAccessView with an EIP-712 signature
from an API key whose access expiry is stored in the registry.

15.4 API access keys and subscription plans
A distinctive feature of Forestis that paid-required models can be queried via view calls by parties
holding an API key. In the suite, an API key is a regular Ethereum keypair (address + private key).
The address is written to the registry with an expiry block number.

15.4.1 Owner API key

During minting (Create tab), the deployer specifies an owner access key address. The registry
sets this key’s expiry to the maximum value, granting perpetual access. The private key is never
placed on-chain; it must be stored securely by the model owner.

15.4.2 Subscriber access keys

Model owners can publish paid access plans. Users buy a plan by paying on-chain, which extends
their access key expiry. The Model page supports:

• generating an API keypair (locally) and storing the private key in the user’s possession;

• buying a plan for that key (transaction);

• using the key to sign an EIP-712 AccessView message (local signing) and calling predictAccessView
(view call).
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User requests
inference

pricingMode=2?

Call predictView
(eth_call)

Paid-required
path

Have
signature?

Call predictTx
(transaction)

Call predictOwnerView
or predictAccessView

no yes

no yes

Figure 15.1: Decision tree for inference execution in the Model tab. Paid-required models permit
view inference only via signatures.

15.5 Owner settings and lifecycle actions
If the connected wallet is the current NFT owner, the Model page enables additional controls:

• toggle inference enabled/disabled;

• change pricing mode, fee, and recipient;

• set (rotate) the owner API access key address;

• list or unlist the NFT in the marketplace;

• burn and delete the model (permanent removal).

The last action, burn+delete, is intentionally irreversible: it removes the model record from the
registry and burns the NFT. This is relevant for moderation and for owners who wish to deprecate
models.
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Generate keypair
(ethers.Wallet.createRandom)

Buy plan
(tx to registry)

Signed view inference
(predictAccessView)

address expiry recorded

Figure 15.2: Access-key workflow for paid-required models: a keypair is generated locally, recorded
on-chain with an expiry, and then used to authorize view inference through EIP-712 signatures.
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Chapter 16

My Tab: Portfolio View

The My page (my.html + src/my_page.js) lists models owned by the connected wallet. It is a
convenience view that builds on ERC-721 enumerability:

1. query balanceOf(owner);

2. iterate tokenOfOwnerByIndex(owner,i);

3. for each tokenId, query registry summary and NFT metadata;

4. render a card grid identical in style to Forest.

The page is intentionally minimal: it performs no writes and does not expose listing or inference
actions directly (those are done in the Model page).
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Chapter 17

Create Tab: Model Studio

The Create tab (create.html + src/create_page.js) is a browser-native training environment
for Forestmodels. It consists of four sub-tabs:

1. Dataset: upload and inspect data; define task, label(s), features, and imbalance strategy.

2. Training: set hyperparameters; run training; optionally run heuristic search.

3. Local preview: inspect metrics and curves; compute feature scores; run local predictions.

4. Mint: choose metadata and pricing; deploy model bytes on-chain (chunking + register).

Dataset
CSV → matrices

Training
worker + metrics

Local preview
metrics + explain

Mint
chunk + register

X,y,meta modelBytes approved model

Figure 17.1: Create tab high-level pipeline. Dataset construction is prerequisite to training; training
produces serialized model bytes; preview performs interpretability and sanity checks; mint writes
bytes to chain and registers the NFT.

17.1 Dataset sub-tab

17.1.1 CSV parsing and type inference

The suite accepts a CSV file as input and parses it in-browser using src/csv_parse.js. Parsing
features:

• supports quoted fields and escaped quotes;

• treats empty fields as missing;

• limits row count to a safety threshold (to avoid memory explosion in the browser);

• preserves raw strings initially; numeric conversion happens later.
After parsing, the user selects:

• a task type (regression / binary / multiclass / multilabel);

• label column(s) according to the task;

• a set of feature columns.
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17.1.2 Label encoding per task

Dataset encoding differs by task:

Regression The label column must be numeric. Rows with non-finite label or feature values are
dropped. The label vector is a float array.

Binary classification The label column is categorical. The user chooses which label value cor-
responds to class 0 (negative) and class 1 (positive). Rows with other label values are
dropped.

Multiclass classification The label column is categorical. The user selects K ≥ 2 allowed label
values and orders them; the order defines the integer class mapping 0..K − 1. Other labels are
dropped.

Multilabel classification The user selects L ≥ 2 label columns, each expected to be parseable as
{0,1} (accepting common textual forms like true/false, yes/no). Rows where any selected
label is missing/invalid are dropped.

17.1.3 Feature selection and exclusion rules

The Create UI lists all CSV columns with checkboxes. The selected label column (or selected label
columns for multilabel) are automatically excluded from the feature set to prevent leakage.

17.1.4 Split preview and determinism

The suite uses deterministic shuffling based on a user-provided seed. This ensures that training
results are reproducible across browsers, provided that floating-point behavior is stable.

For binary and multiclass tasks, the suite optionally performs stratified splitting so that
class proportions are similar across train/validation/test partitions. Stratification is disabled for
multilabel tasks because multi-dimensional label stratification is nontrivial and can be misleading.

17.1.5 Class imbalance handling

Class imbalance handling is a training-only mechanism: it influences gradients/hessians and therefore
learned splits and leaf values, but does not change the on-chain model format.

Three modes are provided:

• None: weights are all 1.

• Auto: weights are computed as the inverse frequency (binary: wc = N/(2 nc); multiclass:
wc = N/(K nc); multilabel: per-label positive weights based on neg/pos ratio).

• Manual: the user supplies weights directly.

Two additional controls refine behavior:

• cap: an upper bound on weights to avoid exploding updates on extremely rare classes.

• normalize: rescales weights so the average weight (approximate) is 1.
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17.1.6 Data Galaxy: 3D distribution and PCA

The Dataset tab includes a 3D scatter visualization to help detect gross issues (separability, outliers,
label leakage). Two modes are supported:

1. Raw feature triplet: plot any three selected features.

2. PCA-3 projection: compute the first three principal components on a sampled subset of
rows and plot in that latent space.

PCA is computed in-browser without external numeric libraries. The implementation:

• samples up to a user-defined number of valid rows;

• standardizes features to zero mean and unit variance;

• uses repeated power iteration with Gram–Schmidt orthonormalization to estimate the top
three eigenvectors of the covariance matrix.

Reservoir sample
valid rows

Standardize
(mean/var)

Power iteration
+ orthogonalize

Project
to 3D coords

Figure 17.2: PCA-3 pipeline used by the Create tab’s 3D visualization. The implementation avoids
heavyweight numerical dependencies and is designed to remain responsive by yielding to the browser
event loop during long operations.

17.2 Training sub-tab

17.2.1 Exposed hyperparameters

The Training sub-tab exposes a pragmatic set of hyperparameters that directly influence:

• model quality (bias/variance trade-offs);

• model size (bytes stored on-chain);

• inference cost (time/gas proportional to ntrees · depth).

A detailed reference table is provided in Chapter 18.

17.2.2 Model size estimate and on-chain constraints

Before training, the suite estimates the serialized model size using the same formula as the on-chain
format specification (Appendix, Chapters 12+). It enforces two constraints:

1. Absolute byte limit: SIZE_LIMIT = 15,000,000. This is a suite-level guardrail to prevent
deploying extremely large models.

2. Tree-count bound for v2: registry stores nTrees as uint16. For multiclass/multilabel
models (format v2), total trees equals treesPerClass × nClasses and must fit in 65535.

If the user selects parameters that violate constraints, the suite automatically clamps them
(reducing trees in steps of 25, then reducing depth) and keeps UI controls in sync.
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17.2.3 Training worker: isolation and responsiveness

Training is executed in a Web Worker (src/train_worker.js) to keep the UI responsive. The
main thread sends:

• numeric feature matrix X as a flat Float64Array;

• label vector(s) y (Float64Array for regression; Uint8Array/Int32Array encodings for classifica-
tion);

• task metadata (#features, #classes/labels, feature min/range);

• hyperparameters and imbalance settings.

The worker posts back:

• progress updates every tree (training/val metrics); and

• a final done message containing modelBytes and a meta summary.

17.2.4 Learning-rate schedules

Besides a constant learning rate, two schedules are implemented:

Plateau schedule If validation loss does not improve for a specified number of trees, multiply the
learning rate by (1 − dropPct/100), but do not go below minLR.

Piecewise schedule The user specifies explicit ranges of tree indices and learning rates (e.g.,
“1-100 0.1”). Ranges are 1-indexed and inclusive.

These schedules are applied inside the worker as a function of tree index and observed validation
metric.

17.2.5 Early stopping and final refit

When early stopping is enabled, training monitors validation loss and records the best iteration.
The suite optionally performs a final refit stage:

1. train on train/val split with early stopping to select bestIter;

2. retrain from scratch on train+val for a fixed tree budget bestIter, with early stopping
disabled.

This mirrors common practice in boosting workflows: validation is used for model selection, then
the selected configuration is fit on the largest available non-test dataset.

17.2.6 Heuristic hyperparameter search

The Training tab can run a lightweight heuristic search (random mutation around a pivot configu-
ration) to find improved hyperparameters without leaving the browser. The implementation and
distributions are detailed in Chapter 19.
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17.3 Local preview sub-tab
The Local preview tab is a safety and interpretability gate before minting. It:

• decodes the trained model bytes locally using the same format definitions as the runtime;

• displays best train/val/test metrics reported by the worker;

• plots the per-tree metric curves;

• computes feature scores (split usage + permutation importance);

• offers a per-row prediction playground to compare predicted vs actual labels.

17.4 Mint sub-tab
Minting connects the browser-trained model to the on-chain system. It consists of:

1. selecting metadata (name, description, 128 × 128 PNG icon);

2. selecting pricing mode and fee recipient;

3. generating (or supplying) an owner API access key;

4. agreeing to the currently-active Terms and license;

5. writing model bytes to the ModelStore as chunks;

6. writing the pointer-table contract;

7. registering the model in the registry and minting the NFT.

The suite estimates required deploy value via requiredDeployFeeWei(totalBytes) and sepa-
rately reminds the user that gas is paid in addition to that deploy value.

modelBytes
(GL1F)

Split into
24 000B chunks

ModelStore.
write

(chunk i)
(repeat N)

ModelStore.
write

(pointer table)

ModelRegistry.
registerModel
(mint NFT)

Figure 17.3: Minting pipeline: model bytes are chunked and written via ModelStore, then the
pointer-table pointer and metadata are registered in ModelRegistry.
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Chapter 18

Hyperparameter and Specification
Reference

This chapter consolidates the training hyperparameters exposed by the Create tab, links them to
the worker implementation, and highlights interactions with on-chain constraints.

18.1 Primary hyperparameters (Create → Training)

Name UI control Range Default Meaning / implementation
notes

Number of trees treesNum 10–5000 (v1) 250 Boosting rounds for v1 (regres-
sion/binary). For v2 (multi-
class/multilabel), interpreted as
trees per class/label; total trees =
trees × K. Clamped for size and
for uint16 total-tree bound.

Depth depthNum 1–12 4 Maximum depth of each tree. The
model stores a full binary tree of
depth depth; missing splits are rep-
resented by forced nodes (threshold
= INT32_MAX) so that inference
is constant-time per tree.

Learning rate lrNum 0.001–1 0.05 Step size multiplier applied to leaf
updates. In worker, regression uses
∆ = η r; classification uses Newton
step ∆ = −η G/(H + λ).

Min leaf samples minLeafNum 1–1000 10 Minimum number of training sam-
ples required in each child of a split;
if violated, the node becomes forced
(no further splits).

44



Name UI control Range Default Meaning / implementation
notes

Bins binsNum 8–512 32 Histogram bin count used for ap-
proximate split search. Higher bins
increase training time and (slightly)
improve split resolution; does not
affect model size because thresh-
olds are stored as int32 regardless
of bins.

Binning mode binningMode {linear, quan-
tile}

linear Linear mode uses uniform bins be-
tween feature min and max. Quan-
tile mode precomputes per-feature
thresholds from a sample and bins
by empirical quantiles.

Seed seedNum 1–2,147,483,647 42 Seed for deterministic shuffling, fea-
ture sampling, and heuristic search
PRNG. The worker uses xorshift32
to generate reproducible pseudo-
randomness.

Train split trainSplitNum50%–90% 70% Fraction of usable rows assigned to
training. Remaining rows are split
between validation and test.

Validation split valSplitNum 5%–40% 20% Fraction of usable rows assigned to
validation. Test split is implied: 1−
train − val.

Early stopping earlyStopOn on/off on If enabled, stop when valida-
tion metric has not improved for
patience trees. Best iteration is
recorded.

Patience patienceNum 1–500 25 Number of non-improving trees tol-
erated before early stopping trig-
gers.

LR schedule lrSchedMode none/plateau/piecewisenone Optional schedule that modifies
learning rate over time. Plateau
schedule reacts to validation metric
stagnation; piecewise schedule uses
explicit tree-index ranges.

Refit train+val refitOn on/off off If enabled and early stopping is on,
the suite performs a second training
pass on train+val using the selected
best tree budget.

Heuristic search heuristicSearchOnon/off off Enables multiple training rounds
with mutated hyperparameters,
tracking best validation metric.

Search rounds heuristicSearchRounds1–1000 10 Maximum number of heuristic-
search candidate rounds.
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18.2 Imbalance-handling parameters
Imbalance parameters appear on the Dataset tab when a classification task is selected.

Name UI control Default Meaning / implementation
notes

Mode imbMode none none/auto/manual. Auto com-
putes inverse-frequency weights;
manual exposes per-class (or per-
label) inputs.

Cap imbCap 20 Upper bound on weights. Prevents
extreme gradients when classes are
extremely rare.

Normalize imbNormalize on Rescales weights so the weighted
average is approximately 1. Helps
keep learning-rate interpretation
stable.

Stratify split imbStratify on Only for binary/multiclass. Uses
label-stratified splits to keep class
proportions stable across train/-
val/test.

Manual weights dynamic 1 Binary: w0,w1. Multiclass: per-
class. Multilabel: per-label positive
weights (pos_weight style).

18.3 Fixed internal parameters
Some important training choices are fixed in code for simplicity and determinism:

• Column sampling: at each split, the worker samples ⌈√
nfeatures⌉ candidate features.

• Regularization: classification uses λ = 1 in the Newton leaf formula and split gain.

• Model topology: each tree is stored as a complete binary tree of depth depth; forced nodes
encode early termination.

• Quantile threshold sampling: quantile binning uses a fixed sample budget (default 50k
rows) from the (shuffled) training set.
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Chapter 19

Heuristic Search: Auto-Tuning in the
Browser

The heuristic search facility in the Create tab is designed for “good enough” tuning without requiring
external services. It behaves as a bounded random search with memory:

1. start from the user’s base hyperparameters;

2. train a candidate model and evaluate its validation metric;

3. maintain the best candidate so far;

4. generate the next candidate by mutating either the current best (75% probability) or the
original base configuration (25% probability);

5. repeat for a fixed number of rounds or until stopped.

19.1 Candidate generation distribution
Candidate generation uses a deterministic xorshift32 PRNG seeded from the user-provided seed.
Parameters are perturbed multiplicatively (trees, learning rate, minLeaf) and additively (depth),
then clamped to UI bounds and to on-chain size limits.

Listing 19.1: Excerpt of heuristic candidate generation (Create tab).
1 // pivot = bestParams with prob 0.75 , else baseParams
2 const treesFactor = 2 ** (( rand01 () -0.5) * 1.4); // ~[0.62..1.62]
3 let trees = roundTo25 (pivot.trees * treesFactor );
4
5 aStep = round (( rand01 () -0.5) * 4); // [ -2..2]
6 let depth = clamp(pivot.depth + aStep);
7
8 const lrFactor = 10 ** (( rand01 () -0.5) * 0.8); // ~[0.40..2.51]
9 let lr = clamp(pivot.lr * lrFactor );

10
11 const mlFactor = 2 ** (( rand01 () -0.5) * 2.0); // ~[0.5..2]
12 let minLeaf = clamp(round(pivot. minLeaf * mlFactor ));
13
14 // plateau schedule params are optionally perturbed
15 // ...
16
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17 // final clamp: enforce size limit and uint16 tree bounds
18 const cl = clampForSize (trees , depth , task , nClasses );
19 return { ... pivot , trees: cl.trees , depth: cl.depth , lr , minLeaf , ... };

19.2 Objective and selection
The search compares candidates using bestValMetric reported by the worker:

• regression: validation MSE (lower is better);

• classification: validation log loss (lower is better).

Accuracy is reported for diagnostics but is not the primary objective. This is intentional: log
loss is smoother and more sensitive to probability calibration than accuracy.

19.3 Search history table and reproducibility
Each round appends a row to a “Search history” table containing:

• round number;

• selected hyperparameters;

• best validation metric and whether it improved the incumbent.

Because randomness is seeded deterministically and the worker’s training loop is deterministic
given the shuffled splits, the entire search is reproducible if run with the same dataset, same seed,
and same browser floating-point behavior.

19.4 Stopping and failure handling
A “Stop” control terminates the active worker and aborts the search loop. The suite is careful to
unwind pending Promises so that UI state returns to a consistent idle mode.
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Chapter 20

Feature Scoring and Interpretability

The Create tab implements feature scoring to help users understand and validate a model before
minting. The goal is not to provide a full interpretability suite, but to supply two complementary
signals:

1. Split usage: how often a feature is used in learned (non-forced) internal nodes.

2. Permutation importance: how much the test metric degrades when a feature is randomly
permuted.

20.1 Split usage counts
For a fixed-depth tree representation, many internal nodes may be “forced” (no learned split). These
are encoded by thr = INT32_MAX. The feature scoring logic ignores forced nodes when counting
split usage.

Split usage is fast to compute: for each tree and each internal node, increment count[feat] if
the node is not forced.

20.2 Permutation importance on a budget
Permutation importance is computed on a sampled subset of the test split to keep the UI responsive.
The procedure is:

1. select a sample of test rows (cap at 1024 by default, further reduced adaptively);

2. compute baseline predictions and baseline metric;

3. for each feature j:

(a) copy the feature matrix subset;
(b) permute column j (shuffle indices);
(c) recompute predictions and metric;
(d) record ∆loss (increase in loss) and ∆acc (drop in accuracy, if applicable).

The suite adaptively chooses the test-sample size based on an estimated compute budget
proportional to (nfeatures · ntrees · depth).
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Baseline metric
on test sample

For each feature
permute column

Re-evaluate
metric

Rank features
by ∆loss

Figure 20.1: Permutation importance pipeline as implemented in the Create tab. The output is a
feature ranking table shown in Local preview.

20.3 Interpreting feature scores
• A high split count suggests that the feature frequently yields useful partitions, but it does not

directly quantify contribution magnitude.

• A high permutation ∆loss indicates that the feature contains information that the model relies
on (possibly redundantly with other features).

• Negative ∆loss (loss improves when permuted) can occur due to sampling noise or because
the feature introduces spurious correlations.

20.4 Limitations
Permutation importance is a post-hoc diagnostic. It is sensitive to correlated features: if two features
are strongly correlated, permuting one may have limited effect because the other retains similar
information. The suite therefore presents split usage alongside permutation scores to provide a
second perspective.
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Chapter 21

Terms, License, and Legal State

This chapter documents the suite page that surfaces the protocol’s active license and Terms of
Service (ToS), and explains how these values are used by the Create flow. The shipped suite is
intentionally read-only with respect to legal state: it can display the current parameters, but it does
not include any privileged deployment, moderation, or governance console.

21.1 Terms tab
The Terms page (terms.html + src/terms_page.js) is read-only and displays:

• the currently active license (ID, name, URL);

• deploy and listing fees;

• the current ToS version and full ToS text stored on-chain.

This is important for Create: minting requires the user to agree to the active license and ToS
version, and the mint transaction records those IDs.

21.2 Debug dock revisited
All pages include the debug dock described in Section 12. For Create, the dock is particularly
valuable because the end-to-end flow involves multiple sequential transactions (chunk writes, pointer-
table deployment, registry registration, and optional listing) interleaved with long-running worker
computations (training, evaluation, feature scoring).
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Chapter 22

Engineering Notes and Edge Cases

This chapter collects practical engineering considerations that arise from implementing an on-chain
GBDT suite in the browser.

22.1 Determinism and reproducibility
The suite is designed to be deterministic given (dataset, selected columns, seed, hyperparameters):

• dataset splits are generated via seeded shuffling;

• feature subsampling uses a deterministic xorshift PRNG;

• quantile thresholds are computed from a deterministic prefix sample.

However, full cross-platform bitwise determinism is not guaranteed: JavaScript floating-point
behavior is standardized, but subtle differences in optimization, math library implementations, and
worker scheduling can produce small numeric differences. The model format’s quantization helps
stabilize results by rounding thresholds and leaf values to int32.

22.2 Numeric stability and scale selection
The suite chooses scaleQ to maximize precision without overflow. It sets

scaleQ = min
(

106,

⌊2,147,480,000
max |x|

⌋
,

⌊2,147,480,000
max |y|

⌋)
for regression, and omits the y bound for classification.

22.3 Performance characteristics
Training time scales approximately with:

O
(
ntrees · 2depth · nrows

)
modulated by histogram binning and feature subsampling. Inference time (both local and on-chain)
scales with O(ntrees · depth).
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22.4 Security notes: signatures and deadlines
Signature-based view inference (OwnerView and AccessView) uses:

• EIP-712 domain separation (chainId + verifying contract);

• a short deadline (unix timestamp) to reduce replay window;

• a hash of packed features (keccak256of packed bytes) rather than raw feature bytes in typed
data, keeping the signature payload small.

These measures ensure that a signature cannot be replayed on other chains or other runtime
deployments, and limit the time window in which it is valid.
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Part III

Appendices
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Appendix A

Binary Specification (Normative)

A.1 Packed feature vectors
For a model with n features, the runtime expects a byte array of length 4n. Feature i is encoded as
little-endian int32 at offset 4i and represents ⌊xi · scaleQ⌉.

A.2 Tree block (v1 and v2)
Let d be depth, P = 2d, I = P − 1. Then for each tree:

• internal nodes: I records, each 8 bytes: u16 feature + i32 thresholdQ + u16 reserved.

• leaves: P records, each 4 bytes: i32 leafQ.
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Appendix B

Selected Source Excerpts (Informative)

Note
This appendix includes selected excerpts from the bundled source tree under genesis/. The
full source remains in the project folder, but is not typeset here in full to keep the document
to a manageable length.

B.1 Solidity: ModelStore.sol (full; short)

1 // SPDX -License - Identifier : MIT
2 pragma solidity ^0.8.20;
3
4 /// @notice Stores arbitrary byte chunks on -chain by deploying a tiny pointer

contract
5 /// whose runtime bytecode is: MAGIC (4 bytes) || DATA.
6 ///
7 /// Design goals:
8 /// - On - chain writes avoid SSTORE -heavy storage ( cheaper for medium blobs).
9 /// - Reads are easy off -chain via eth_getCode / extcodecopy .

10 /// - Compatible with evmVersion = istanbul (no post - Istanbul opcodes required ).
11 contract ModelStore {
12 // 0x47 0x4c 0x31 0x43 = "GL1C" ( GenesisL1 Chunk)
13 uint32 public constant MAGIC = 0 x474c3143 ;
14
15 event ChunkWritten ( address indexed pointer , uint256 size);
16
17 /// @notice Deploy a new pointer contract containing (MAGIC || data) as its

runtime bytecode .
18 /// @dev Runtime code size must respect EIP -170 (24 ,576 bytes). We reserve 4

bytes for MAGIC.
19 function write(bytes calldata data) external returns ( address pointer ) {
20 uint256 dlen = data. length ;
21 require (dlen <= 24 _572 , " CHUNK_TOO_LARGE ");
22
23 uint256 rlen = dlen + 4; // runtime length
24 bytes memory init = new bytes (14 + rlen);
25
26 assembly ("memory -safe") {
27 let p := add(init , 32)
28
29 // Minimal init -code:
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30 // PUSH2 rlen
31 // PUSH1 0x0e
32 // PUSH1 0x00
33 // CODECOPY
34 // PUSH2 rlen
35 // PUSH1 0x00
36 // RETURN
37 mstore8 (p, 0x61)
38 mstore8 (add(p, 1), shr (8, rlen))
39 mstore8 (add(p, 2), and(rlen , 0xff))
40 mstore8 (add(p, 3), 0x60)
41 mstore8 (add(p, 4), 0x0e)
42 mstore8 (add(p, 5), 0x60)
43 mstore8 (add(p, 6), 0x00)
44 mstore8 (add(p, 7), 0x39)
45 mstore8 (add(p, 8), 0x61)
46 mstore8 (add(p, 9), shr (8, rlen))
47 mstore8 (add(p, 10) , and(rlen , 0xff))
48 mstore8 (add(p, 11) , 0x60)
49 mstore8 (add(p, 12) , 0x00)
50 mstore8 (add(p, 13) , 0xf3)
51
52 // Runtime start
53 let r := add(p, 14)
54
55 // MAGIC (4 bytes)
56 mstore (r, shl (224 , 0 x474c3143 ))
57
58 // DATA
59 calldatacopy (add(r, 4), data.offset , dlen)
60
61 // CREATE
62 pointer := create (0, p, mload(init))
63 }
64
65 require ( pointer != address (0) , " CREATE_FAIL ");
66 emit ChunkWritten (pointer , dlen);
67 }
68 }

B.2 Solidity: ModelRegistry.sol (registration + access keys)

B.2.1 Title-word AND search (for the Store UI)

1 uint16 nFeatures ,
2 uint16 nTrees ,
3 uint16 depth ,
4 int32 baseQ ,
5 uint32 scaleQ ,
6 bool inferenceEnabled ,
7 uint8 pricingMode ,
8 uint256 feeWei ,
9 address feeRecipient

10 ) {
11 Model storage m = models [ modelId ];
12 require (m. exists && m.active , "NF");
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13 return (m.tablePtr , m.chunkSize , m.numChunks , m.totalBytes , m.nFeatures ,
m.nTrees , m.depth , m.baseQ , m.scaleQ , m. inferenceEnabled ,
m. pricingMode , m.feeWei , m. feeRecipient );

14 }
15
16 // AND search on words (exact hash match), paginated over the first word list.
17 function searchTitleWords ( bytes32 [] calldata words , uint256 cursor , uint256

limit) external view returns ( uint256 [] memory tokenIds , uint256
nextCursor ) {

18 if (words. length == 0) return (new uint256 [](0) , 0);
19
20 uint256 [] storage baseList = _wordTokens [words [0]];
21 uint256 n = baseList . length ;
22 if ( cursor >= n) return (new uint256 [](0) , 0);
23
24 uint256 [] memory tmp = new uint256 []( limit);
25 uint256 found = 0;
26 uint256 i = cursor ;
27
28 for (; i < n && found < limit; i++) {
29 uint256 tid = baseList [i];
30 bytes32 mid = modelIdByTokenId [tid ];
31 if (mid == bytes32 (0)) continue ;
32 Model storage m = models [mid ];
33 if (!m. exists || !m. active ) continue ;
34
35 bool ok = true;
36 for ( uint256 w = 1; w < words. length ; w++) {
37 if (! _wordHasToken [words[w]][ tid ]) { ok = false; break; }
38 }
39 if (!ok) continue ;
40
41 tmp[found ++] = tid;
42 }
43
44 tokenIds = new uint256 []( found);
45 for ( uint256 k = 0; k < found; k++) tokenIds [k] = tmp[k];
46 nextCursor = (i >= n) ? 0 : i;
47 }

B.2.2 registerModel: mint NFT, bind bytes, enforce Terms + License

1 function registerModel (
2 bytes32 modelId ,
3 address tablePtr ,
4 uint32 chunkSize ,
5 uint32 numChunks ,
6 uint32 totalBytes ,
7 uint16 nFeatures ,
8 uint16 nTrees ,
9 uint16 depth ,

10 int32 baseQ ,
11 uint32 scaleQ ,
12 string calldata title_ ,
13 string calldata description_ ,
14 bytes calldata iconPng32 ,
15 string calldata featuresPacked ,
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16 bytes32 [] calldata titleWordHashes ,
17 uint8 pricingMode ,
18 uint256 feeWei ,
19 address recipient ,
20 uint32 tosVersionAccepted_ ,
21 uint32 licenseIdAccepted_ ,
22 address ownerKey
23 ) external payable returns ( uint256 tokenId ) {
24 require ( address ( modelNFT ) != address (0) , " NFT_NOT_SET ");
25 require ( modelId != bytes32 (0) , "MID0");
26 require (! models [ modelId ]. exists , " EXISTS ");
27 uint256 requiredFee = requiredDeployFeeWei ( totalBytes );
28 require (msg.value == requiredFee , " DEPLOY_FEE ");
29
30 require ( tosVersionAccepted_ == tosVersion , "TOS");
31 require ( licenseIdAccepted_ == activeLicenseId , "LIC");
32 require ( ownerKey != address (0) , " OWNER_KEY ");
33
34 require (bytes ( title_ ). length > 0, "TITLE");
35 require (bytes ( description_ ). length > 0, "DESC");
36 require ( iconPng32 . length > 0, "ICON");
37 require ( numChunks > 0, " NO_CHUNKS ");
38 require ( chunkSize > 0, " CHUNK0 ");
39
40 // fee rules
41 if ( pricingMode == 0) {
42 feeWei = 0;
43 } else {
44 require ( feeWei > 0, " FEE_ZERO ");
45 }
46 if ( recipient == address (0)) recipient = msg. sender ;
47
48 // mint NFT
49 tokenId = modelNFT . mintTo (msg.sender , title_ , description_ , iconPng32 ,

featuresPacked );
50 // Grant the model owner a perpetual API access key.
51 accessExpiry [ modelId ][ ownerKey ] = type( uint64 ).max;
52 emit OwnerAccessKeySet (modelId , ownerKey , type( uint64 ).max);
53
54 Model storage m = models [ modelId ];
55 m. exists = true;
56 m. active = true;
57 m. modelId = modelId ;
58
59 m. tablePtr = tablePtr ;
60 m. chunkSize = chunkSize ;
61 m. numChunks = numChunks ;
62 m. totalBytes = totalBytes ;
63
64 m. nFeatures = nFeatures ;
65 m. nTrees = nTrees ;
66 m.depth = depth;
67 m.baseQ = baseQ;
68 m. scaleQ = scaleQ ;
69
70 m. inferenceEnabled = true;
71 m. pricingMode = pricingMode ;
72 m. feeWei = feeWei ;
73 m. feeRecipient = recipient ;
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74
75 m. creator = msg. sender ;
76 m. tosVersionAccepted = tosVersionAccepted_ ;
77 m. licenseIdAccepted = licenseIdAccepted_ ;
78 m. tokenId = tokenId ;
79
80 modelIdByTokenId [ tokenId ] = modelId ;
81 tokenIdByModelId [ modelId ] = tokenId ;
82
83 // title index
84 if ( titleWordHashes . length > 0) {
85 bytes32 [] storage arr = _tokenWords [ tokenId ];
86 for ( uint256 i = 0; i < titleWordHashes . length ; i++) {
87 bytes32 wh = titleWordHashes [i];
88 if (wh == bytes32 (0)) continue ;
89 if ( _wordHasToken [wh][ tokenId ]) continue ;
90 _wordHasToken [wh][ tokenId ] = true;
91 _wordTokens [wh]. push( tokenId );
92 arr.push(wh);
93 }
94 }
95
96 // forward deploy fee to owner
97 if ( requiredFee > 0) {
98 (bool ok ,) = owner.call{value: requiredFee }("");
99 require (ok , " FEE_SEND ");

100 }
101
102 emit ModelRegistered (tokenId , modelId , msg. sender );
103 }

B.2.3 Subscription access keys (paid-required models)

1 // ===== API Access Key Plans =====
2
3 function createAccessPlan ( bytes32 modelId , uint32 durationBlocks , uint256

priceWei , bool active ) external returns ( uint8 planId ) {
4 _requireTokenOwnerByModelId ( modelId );
5 require ( models [ modelId ]. pricingMode == 2, "MODE");
6 require ( durationBlocks > 0, "DUR0");
7 planId = accessPlanCount [ modelId ] + 1;
8 require ( planId != 0, " PLAN_OVERFLOW "); // uint8 overflow
9 accessPlanCount [ modelId ] = planId ;

10 _accessPlans [ modelId ][ planId ] = AccessPlan ({ durationBlocks :
durationBlocks , priceWei : priceWei , active : active });

11 emit AccessPlanSet (modelId , planId , durationBlocks , priceWei , active );
12 }
13
14 function setAccessPlan ( bytes32 modelId , uint8 planId , uint32 durationBlocks ,

uint256 priceWei , bool active ) external {
15 _requireTokenOwnerByModelId ( modelId );
16 require ( models [ modelId ]. pricingMode == 2, "MODE");
17 require ( planId > 0 && planId <= accessPlanCount [ modelId ], " PLAN_ID ");
18 require ( durationBlocks > 0, "DUR0");
19 _accessPlans [ modelId ][ planId ] = AccessPlan ({ durationBlocks :

durationBlocks , priceWei : priceWei , active : active });
20 emit AccessPlanSet (modelId , planId , durationBlocks , priceWei , active );
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21 }
22
23 function getAccessPlan ( bytes32 modelId , uint8 planId ) external view returns

( uint32 durationBlocks , uint256 priceWei , bool active ) {
24 AccessPlan memory p = _accessPlans [ modelId ][ planId ];
25 return (p. durationBlocks , p.priceWei , p. active );
26 }
27
28 function buyAccess ( bytes32 modelId , uint8 planId , address key) external

payable returns ( uint64 newExpiry ) {
29 require (key != address (0) , "KEY0");
30 Model storage m = models [ modelId ];
31 require (m. exists && m.active , "NF");
32 require (m. pricingMode == 2, "MODE");
33
34 AccessPlan memory p = _accessPlans [ modelId ][ planId ];
35 require (p.active , " PLAN_OFF ");
36 require (msg.value == p.priceWei , "PRICE");
37
38 uint64 cur = accessExpiry [ modelId ][ key ];
39 uint64 start = cur > uint64 (block. number ) ? cur : uint64 (block. number );
40 newExpiry = start + uint64 (p. durationBlocks );
41 accessExpiry [ modelId ][ key] = newExpiry ;
42
43 // payout to current owner / recipient
44 address payTo = m. feeRecipient ;
45 if (payTo == address (0)) {
46 payTo = modelNFT . ownerOf (m. tokenId );
47 }
48 if (msg.value > 0) {
49 (bool ok ,) = payTo.call{value: msg.value }("");
50 require (ok , " PAY_FAIL ");
51 }
52
53 emit AccessPurchased (modelId , msg.sender , key , planId , newExpiry );
54 }
55
56 function setOwnerAccessKey ( bytes32 modelId , address key) external {
57 _requireTokenOwnerByModelId ( modelId );
58 require ( models [ modelId ]. pricingMode == 2, "MODE");
59 require (key != address (0) , "KEY0");
60 accessExpiry [ modelId ][ key] = type( uint64 ).max;
61 emit OwnerAccessKeySet (modelId , key , type( uint64 ).max);
62 }
63
64 function revokeAccessKey ( bytes32 modelId , address key) external {
65 _requireTokenOwnerByModelId ( modelId );
66 require ( models [ modelId ]. pricingMode == 2, "MODE");
67 require (key != address (0) , "KEY0");
68 accessExpiry [ modelId ][ key] = 0;
69 emit AccessRevoked (modelId , key);
70 }

B.3 Solidity: ForestRuntime.sol (view gating + chunk reads)

B.3.1 View inference and fee-gating rationale
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1 contract ForestRuntime {
2 bytes4 internal constant CHUNK_MAGIC = 0 x474c3143 ; // "GL1C"
3 IModelRegistryRuntime public immutable registry ;
4 // ---- EIP -712: owner -gated view inference (no -tx) ----
5 // We cannot safely allow free view inference for paid models based on

msg. sender alone ,
6 // because eth_call can spoof the caller address . Instead , the current NFT

owner signs
7 // an EIP -712 message and anyone can relay it in a read -call.
8 bytes32 private constant _EIP712DOMAIN_TYPEHASH =

keccak256 (" EIP712Domain ( string name , string version , uint256 chainId , address
verifyingContract )");

9 bytes32 private constant _NAME_HASH = keccak256 ( bytes (" GenesisL1 Forest "));
10 bytes32 private constant _VERSION_HASH = keccak256 ( bytes("1"));
11 bytes32 private constant _OWNER_VIEW_TYPEHASH = keccak256 (" OwnerView ( bytes32

modelId , bytes32 packedHash , uint256 deadline )");
12 bytes32 private constant _ACCESS_VIEW_TYPEHASH =

keccak256 (" AccessView ( bytes32 modelId , bytes32 packedHash , uint256
deadline )");

13
14
15 event Inference ( bytes32 indexed modelId , address indexed caller , int256

scoreQ , uint256 valueWei );
16 event InferenceClass ( bytes32 indexed modelId , address indexed caller , uint16

classIndex , int256 bestScoreQ , uint256 valueWei );
17 // Vector - output inference (model format v2): returns logitsQ per label/class.
18 // NOTE: We emit int256 [] to preserve the full accumulator range (can exceed

int32 for many trees).
19 event InferenceMulti ( bytes32 indexed modelId , address indexed caller ,

int256 [] logitsQ , uint256 valueWei );
20
21 constructor ( address registryAddr ) {
22 require ( registryAddr != address (0) , "REG0");
23 registry = IModelRegistryRuntime ( registryAddr );
24 }
25
26 // Read -call inference .
27 //
28 // IMPORTANT : If a model is configured as "paid required " (mode =2) , this

function reverts .
29 // Paid inference must be performed through predictTx () so fees can be

enforced .
30 function predictView ( bytes32 modelId , bytes calldata packedFeaturesQ )

external view returns ( int256 scoreQ ) {
31 // Read the model settings to block free inference for pay - required

models .
32 // We destructure all 13 fields for cross -solc stability (no blank tuple

slots).
33 (
34 address _tablePtr ,
35 uint32 _chunkSize ,
36 uint32 _numChunks ,
37 uint32 _totalBytes ,
38 uint16 _nFeatures ,
39 uint16 _nTrees ,
40 uint16 _depth ,
41 int32 _baseQ ,
42 uint32 _scaleQ ,
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43 bool enabled ,
44 uint8 mode ,
45 uint256 _feeWei ,
46 address _recipient
47 ) = registry . getModelRuntime ( modelId );
48
49 // Silence unused - variable warnings .
50 _sinkA ( _tablePtr );
51 _sinkU ( _chunkSize );
52 _sinkU ( _numChunks );
53 _sinkU ( _totalBytes );
54 _sinkU ( _nFeatures );
55 _sinkU ( _nTrees );
56 _sinkU ( _depth );
57 _sinkI ( _baseQ );
58 _sinkU ( _scaleQ );
59 _sinkU ( _feeWei );
60 _sinkA ( _recipient );
61
62 require (enabled , " INF_DISABLED ");
63 require (mode != 2, " PAID_ONLY ");
64
65 scoreQ = _predict (modelId , packedFeaturesQ );
66 }
67
68 // Read -call inference for multiclass classification (model format v2).
69 //
70 // IMPORTANT : If a model is configured as "paid required " (mode =2) , this

function reverts .
71 // Paid inference must be performed through predictClassTx () so fees can be

enforced .
72 function predictClassView ( bytes32 modelId , bytes calldata packedFeaturesQ )
73 external
74 view
75 returns ( uint16 classIndex , int256 bestScoreQ )
76 {
77 (
78 address tablePtr ,
79 uint32 chunkSize ,
80 uint32 numChunks ,
81 uint32 totalBytes ,
82 uint16 nFeatures ,
83 uint16 _nTrees ,
84 uint16 _depth ,
85 int32 _baseQ ,
86 uint32 _scaleQ ,
87 bool enabled ,
88 uint8 mode ,
89 uint256 _feeWei ,
90 address _recipient
91 ) = registry . getModelRuntime ( modelId );
92
93 // Silence unused - variable warnings .
94 _sinkU ( _nTrees );
95 _sinkU ( _depth );
96 _sinkI ( _baseQ );
97 _sinkU ( _scaleQ );
98 _sinkU ( _feeWei );
99 _sinkA ( _recipient );
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100
101 require (enabled , " INF_DISABLED ");
102 require (mode != 2, " PAID_ONLY ");
103
104 (classIndex , bestScoreQ ) = _predictClassFromChunks (modelId ,

packedFeaturesQ , tablePtr , chunkSize , numChunks , totalBytes ,
nFeatures );

105 }
106
107 // Read -call inference for vector - output v2 models ( multiclass / multilabel ).
108 // For multilabel classification , the caller should apply

sigmoid ( logitQ / scaleQ ) per label.
109 //
110 // IMPORTANT : If a model is configured as "paid required " (mode =2) , this

function reverts .
111 // Paid inference must be performed through predictMultiTx () so fees can be

enforced .
112 function predictMultiView ( bytes32 modelId , bytes calldata packedFeaturesQ )
113 external
114 view
115 returns ( int256 [] memory logitsQ )
116 {
117 (
118 address tablePtr ,
119 uint32 chunkSize ,
120 uint32 numChunks ,
121 uint32 totalBytes ,
122 uint16 nFeatures ,
123 uint16 _nTrees ,
124 uint16 _depth ,
125 int32 _baseQ ,
126 uint32 _scaleQ ,
127 bool enabled ,
128 uint8 mode ,
129 uint256 _feeWei ,
130 address _recipient
131 ) = registry . getModelRuntime ( modelId );
132
133 // Silence unused - variable warnings .
134 _sinkU ( _nTrees );
135 _sinkU ( _depth );
136 _sinkI ( _baseQ );
137 _sinkU ( _scaleQ );
138 _sinkU ( _feeWei );
139 _sinkA ( _recipient );
140
141 require (enabled , " INF_DISABLED ");
142 require (mode != 2, " PAID_ONLY ");
143
144 logitsQ = _predictMultiFromChunks (modelId , packedFeaturesQ , tablePtr ,

chunkSize , numChunks , totalBytes , nFeatures );
145 }

B.3.2 Chunk addressing and cross-chunk reads via EXTCODECOPY

1
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2 function _chunkPtrAt ( address tablePtr , uint256 chunkIdx ) internal view
returns ( address ptr) {

3 // read 32- byte slot from table runtime code at offset 4 + chunkIdx *32
4 uint256 src = 4 + chunkIdx * 32;
5 bytes32 word;
6 assembly ("memory -safe") {
7 let p := mload (0 x40)
8 extcodecopy (tablePtr , p, src , 32)
9 word := mload (p)

10 }
11 ptr = address ( uint160 ( uint256 (word)));
12 require (ptr != address (0) , " BAD_PTR ");
13 _requireChunkMagic (ptr , " CHUNK_CODE ");
14 }
15
16 function _readBytes ( address tablePtr , uint32 chunkSize , uint256 off , uint256

n) internal view returns ( bytes32 outWord ) {
17 // reads up to 32 bytes starting at off , returns in lowest bytes of

outWord
18 require (n > 0 && n <= 32, "READN");
19 uint256 csz = uint256 ( chunkSize );
20
21 uint256 chunkIdx = off / csz;
22 uint256 inChunk = off % csz;
23
24 address ptr = _chunkPtrAt (tablePtr , chunkIdx );
25
26 // if within one chunk
27 if ( inChunk + n <= csz) {
28 assembly ("memory -safe") {
29 let p := mload (0 x40)
30 extcodecopy (ptr , p, add (4, inChunk ), n)
31 outWord := mload(p)
32 }
33 } else {
34 // boundary : read first part then second part
35 uint256 n1 = csz - inChunk ;
36 uint256 n2 = n - n1;
37
38 bytes memory tmp = new bytes(n);
39 assembly ("memory -safe") {
40 extcodecopy (ptr , add(tmp , 32) , add (4, inChunk ), n1)
41 }
42 address ptr2 = _chunkPtrAt (tablePtr , chunkIdx + 1);
43 assembly ("memory -safe") {
44 extcodecopy (ptr2 , add(add(tmp , 32) , n1), 4, n2)
45 outWord := mload(add(tmp , 32))
46 }
47 }
48 }
49
50 function _readU16Model ( address tablePtr , uint32 chunkSize , uint256 off)

internal view returns ( uint16 v) {
51 bytes32 w = _readBytes (tablePtr , chunkSize , off , 2);
52 uint256 b0 = uint8( bytes1 (w));
53 uint256 b1 = uint8( bytes1 (w << 8));
54 v = uint16 (b0 | (b1 << 8));
55 }
56
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57 function _readU8Model ( address tablePtr , uint32 chunkSize , uint256 off)
internal view returns ( uint8 v) {

58 bytes32 w = _readBytes (tablePtr , chunkSize , off , 1);
59 v = uint8( bytes1 (w));
60 }
61
62 function _readU32Model ( address tablePtr , uint32 chunkSize , uint256 off)

internal view returns ( uint32 v) {
63 bytes32 w = _readBytes (tablePtr , chunkSize , off , 4);
64 uint256 b0 = uint8( bytes1 (w));
65 uint256 b1 = uint8( bytes1 (w << 8));
66 uint256 b2 = uint8( bytes1 (w << 16));
67 uint256 b3 = uint8( bytes1 (w << 24));
68 v = uint32 (b0 | (b1 << 8) | (b2 << 16) | (b3 << 24));
69 }
70
71 function _readI32Model ( address tablePtr , uint32 chunkSize , uint256 off)

internal view returns ( int32 v) {
72 bytes32 w = _readBytes (tablePtr , chunkSize , off , 4);
73 uint256 b0 = uint8( bytes1 (w));
74 uint256 b1 = uint8( bytes1 (w << 8));
75 uint256 b2 = uint8( bytes1 (w << 16));
76 uint256 b3 = uint8( bytes1 (w << 24));
77 uint32 u = uint32 (b0 | (b1 << 8) | (b2 << 16) | (b3 << 24));
78 v = int32( int256 ( uint256 (u)));
79 }
80
81
82 // ---- EIP -712 helpers ----
83 function _domainSeparatorV4 () internal view returns ( bytes32 ) {
84 return keccak256 (abi. encode (
85 _EIP712DOMAIN_TYPEHASH ,
86 _NAME_HASH ,
87 _VERSION_HASH ,
88 block.chainid ,
89 address (this)
90 ));
91 }
92
93 function _hashTypedDataV4 ( bytes32 structHash ) internal view returns ( bytes32 )

{
94 return keccak256 (abi. encodePacked (hex"1901", _domainSeparatorV4 (),

structHash ));
95 }
96
97 function _recover ( bytes32 digest , bytes calldata sig) internal pure returns

( address ) {
98 if (sig. length != 65) return address (0);
99 bytes32 r;

100 bytes32 s;

B.4 JavaScript: train_worker.js (model serialization + a tree
builder)

B.4.1 Binary formats GL1F v1 and v2 (serialization)
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1 function serializeModel ({ nFeatures , depth , nTrees , baseQ , scaleQ , trees }) {
2 const pow = 1 << depth;
3 const internal = pow - 1;
4 const perTree = internal * 8 + pow * 4;
5 const totalBytes = 24 + nTrees * perTree ;
6
7 const out = new Uint8Array ( totalBytes );
8 const dv = new DataView (out. buffer );
9

10 out [0] = "G". charCodeAt (0);
11 out [1] = "L". charCodeAt (0);
12 out [2] = "1". charCodeAt (0);
13 out [3] = "F". charCodeAt (0);
14 out [4] = 1;
15 out [5] = 0;
16
17 dv. setUint16 (6, nFeatures , true);
18 dv. setUint16 (8, depth , true);
19 dv. setUint32 (10, nTrees , true);
20 dv. setInt32 (14, baseQ , true);
21 dv. setUint32 (18, scaleQ , true);
22 out [22] = 0;
23 out [23] = 0;
24
25 let off = 24;
26 for (let t = 0; t < nTrees ; t++) {
27 const tr = trees[t];
28 const feat = tr.feat;
29 const thr = tr.thr;
30 const leaf = tr.leaf;
31 for (let i = 0; i < internal ; i++) {
32 dv. setUint16 (off , feat[i], true); off += 2;
33 dv. setInt32 (off , thr[i], true); off += 4;
34 dv. setUint16 (off , 0, true); off += 2;
35 }
36 for (let i = 0; i < pow; i++) {
37 dv. setInt32 (off , leaf[i], true); off += 4;
38 }
39 }
40
41 return out;
42 }
43
44 function serializeModelV2 ({ nFeatures , depth , nClasses , treesPerClass ,

baseLogitsQ , scaleQ , treesByClass }) {
45 const pow = 1 << depth;
46 const internal = pow - 1;
47 const perTree = internal * 8 + pow * 4;
48
49 const headerSize = 24 + nClasses * 4;
50 const totalTrees = treesPerClass * nClasses ;
51 const totalBytes = headerSize + totalTrees * perTree ;
52
53 const out = new Uint8Array ( totalBytes );
54 const dv = new DataView (out. buffer );
55
56 out [0] = "G". charCodeAt (0);
57 out [1] = "L". charCodeAt (0);
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58 out [2] = "1". charCodeAt (0);
59 out [3] = "F". charCodeAt (0);
60 out [4] = 2; // version
61 out [5] = 0;
62
63 dv. setUint16 (6, nFeatures , true);
64 dv. setUint16 (8, depth , true);
65 dv. setUint32 (10, treesPerClass , true);
66 dv. setInt32 (14, 0, true); // reserved
67 dv. setUint32 (18, scaleQ , true);
68 dv. setUint16 (22, nClasses , true);
69
70 // base logits
71 let off = 24;
72 for (let k = 0; k < nClasses ; k++) {
73 dv. setInt32 (off , baseLogitsQ [k] | 0, true);
74 off += 4;
75 }
76
77 // Trees: class -major (all trees for class0 , then class1 , ...)
78 for (let k = 0; k < nClasses ; k++) {
79 const clsTrees = treesByClass [k] || [];
80 for (let t = 0; t < treesPerClass ; t++) {
81 const tr = clsTrees [t];
82 const feat = tr.feat;
83 const thr = tr.thr;
84 const leaf = tr.leaf;
85 for (let i = 0; i < internal ; i++) {
86 dv. setUint16 (off , feat[i], true); off += 2;
87 dv. setInt32 (off , thr[i], true); off += 4;
88 dv. setUint16 (off , 0, true); off += 2;
89 }
90 for (let i = 0; i < pow; i++) {
91 dv. setInt32 (off , leaf[i], true); off += 4;
92 }
93 }
94 }
95
96 return out;
97 }

B.4.2 Regression tree builder (histogram/quantile thresholding)

1 function buildTreeRegression ({
2 X, nRows , nFeatures , trainSamples , residual ,
3 featMin , featRange , depth , minLeaf , lr , scaleQ , rng ,
4 bins = 32, binning = " linear ", qThr = null
5 }) {
6 // Split - candidate histogram binning is training -only.
7 // On -chain format (tree structure + quantized thresholds / leaves ) stays

unchanged .
8 const BINS = Math.max (8, bins | 0);
9 const isQuantile = String ( binning || ""). toLowerCase () === " quantile ";

10
11 const pow = 1 << depth;
12 const internal = pow - 1;
13
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14 const featU16 = new Uint16Array ( internal );
15 const thrI32 = new Int32Array ( internal );
16 const leafI32 = new Int32Array (pow);
17
18 function fillForced (nodeIdx , level , leafValQ ) {
19 if (level === depth) {
20 leafI32 [ nodeIdx - internal ] = leafValQ ;
21 return ;
22 }
23 featU16 [ nodeIdx ] = 0;
24 thrI32 [ nodeIdx ] = INT32_MAX ;
25 fillForced ( nodeIdx * 2 + 1, level + 1, leafValQ );
26 fillForced ( nodeIdx * 2 + 2, level + 1, leafValQ );
27 }
28
29 function computeLeafQ ( samples ) {
30 const m = meanResidual (residual , samples );
31 const v = lr * m;
32 return clampI32 (Math.round(v * scaleQ ));
33 }
34
35 function nodeSplit (nodeIdx , level , samples ) {
36 if ( stopFlag ) return ;
37
38 if ( samples . length === 0) { fillForced (nodeIdx , level , 0); return ; }
39 if (level === depth) { leafI32 [ nodeIdx - internal ] = computeLeafQ ( samples );

return ; }
40 if ( samples . length < 2 * minLeaf ) { fillForced (nodeIdx , level ,

computeLeafQ ( samples )); return ; }
41
42 const colsample = Math.max (1, Math.round(Math.sqrt( nFeatures )));
43 const feats = sampleFeatures (nFeatures , colsample , rng);
44
45 let bestF = -1;
46 let bestThrQ = 0;
47 let bestSSE = Infinity ;
48
49 const cnt = new Int32Array (BINS);
50 const sum = new Float64Array (BINS);
51 const sum2 = new Float64Array (BINS);
52
53 for (let fi = 0; fi < feats. length ; fi ++) {
54 const f = feats[fi];
55 const range = featRange [f];
56 if (!( range > 0)) continue ;
57
58 const thrArr = isQuantile ? (qThr ? qThr[f] : null) : null;
59 if ( isQuantile ) {
60 if (! thrArr || ( thrArr . length | 0) !== (BINS - 1)) continue ;
61 }
62
63 cnt.fill (0); sum.fill (0); sum2.fill (0);
64
65 const minF = featMin [f];
66 const inv = 1 / range;
67
68 let totalCount = 0;
69 let totalSum = 0;
70 let totalSum2 = 0;
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71
72 for (let i = 0; i < samples . length ; i++) {
73 const r = samples [i];
74 const x = X[r * nFeatures + f];
75 const rr = residual [r];
76
77 let b = 0;
78 if ( isQuantile ) {
79 // Lower -bound: first threshold >= x. Returns [0.. BINS -1].
80 let lo = 0, hi = thrArr . length ;
81 while (lo < hi) {
82 const mid = (lo + hi) >> 1;
83 if (x <= thrArr [mid ]) hi = mid;
84 else lo = mid + 1;
85 }
86 b = lo;
87 } else {
88 b = Math.floor (((x - minF) * inv) * BINS);
89 if (b < 0) b = 0;
90 else if (b >= BINS) b = BINS - 1;
91 }
92
93 cnt[b] += 1;
94 sum[b] += rr;
95 sum2[b] += rr * rr;
96
97 totalCount += 1;
98 totalSum += rr;
99 totalSum2 += rr * rr;

100 }
101
102 if ( totalCount < 2 * minLeaf ) continue ;
103
104 let leftCount = 0;
105 let leftSum = 0;
106 let leftSum2 = 0;
107
108 for (let b = 0; b < BINS - 1; b++) {
109 leftCount += cnt[b];
110 leftSum += sum[b];
111 leftSum2 += sum2[b];
112
113 const rightCount = totalCount - leftCount ;
114 if ( leftCount < minLeaf || rightCount < minLeaf ) continue ;
115
116 const rightSum = totalSum - leftSum ;
117 const rightSum2 = totalSum2 - leftSum2 ;
118
119 const leftSSE = leftSum2 - ( leftSum * leftSum ) / leftCount ;
120 const rightSSE = rightSum2 - ( rightSum * rightSum ) / rightCount ;
121 const sse = leftSSE + rightSSE ;
122
123 if (sse < bestSSE ) {
124 bestSSE = sse;
125 bestF = f;
126 const thrF = isQuantile ? thrArr [b] : (minF + range * ((b + 1) / BINS));
127 bestThrQ = clampI32 (Math.round(thrF * scaleQ ));
128 }
129 }
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130 }
131
132 if (bestF < 0) { fillForced (nodeIdx , level , computeLeafQ ( samples )); return ; }
133
134 const left = [];
135 const right = [];
136 for (let i = 0; i < samples . length ; i++) {
137 const r = samples [i];
138 const x = X[r * nFeatures + bestF ];
139 const xQ = clampI32 (Math.round(x * scaleQ ));
140 if (xQ > bestThrQ ) right.push(r);
141 else left.push(r);
142 }
143
144 if (left. length < minLeaf || right. length < minLeaf ) { fillForced (nodeIdx ,

level , computeLeafQ ( samples )); return ; }
145
146 featU16 [ nodeIdx ] = bestF;
147 thrI32 [ nodeIdx ] = bestThrQ ;
148
149 nodeSplit ( nodeIdx * 2 + 1, level + 1, left);
150 nodeSplit ( nodeIdx * 2 + 2, level + 1, right);
151 }
152
153 nodeSplit (0, 0, Array.from( trainSamples ));
154 return { feat: featU16 , thr: thrI32 , leaf: leafI32 };
155 }

B.5 JavaScript: create_page.js (deployment chunking and pointer-
table creation)

1 if (! trained ?. bytes ?. length ) throw new Error("Train a model first");
2 if (! datasetNumeric ?. featureNames ?. length ) throw new Error(" Feature labels

missing ");
3 if (! iconBytes ?. length ) throw new Error(" Upload icon");
4 if (! ownerKeyAddr ?. value) throw new Error(" Generate owner API key");
5 if (! ownerKeySaved ?. checked ) throw new Error(" Confirm you saved the owner

API key private key");
6 if (!( agreeTos . checked && agreeLicense . checked )) throw new Error("Agree to

Terms and License ");
7
8 const title = metaName .value.trim ();
9 const desc = metaDesc .value.trim ();

10 if (title. length < 3 || desc. length < 8) throw new Error(" Provide name +
description ");

11 const words = titleWordHashes (title);
12 if (! words. length ) throw new Error("Title should include at least one word

(2+ chars)");
13
14 const mode = Number ( pricingMode .value);
15 const feeEth = clamp( pricingFee .value || "0", 0.001 , 1);
16 let feeWei = 0n;
17 if (mode === 0) feeWei = 0n;
18 else feeWei = ethToWei ( String ( feeEth ));
19
20 const { signer } = await getSignerProvider ();
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21 const signerAddr = await signer . getAddress ();
22
23 const store = new ethers . Contract ( mustAddr (sys.store), ABI_STORE , signer );
24 const registry = new ethers . Contract ( mustAddr (sys. registry ), ABI_REGISTRY ,

signer );
25
26 // Model bytes
27 const bytes = trained .bytes;
28 const total = bytes. length ;
29
30 // Read chain settings via the dedicated RPC (more reliable than wallet

provider for eth_call ).
31 const rprov = getReadProvider (sys.rpc);
32 const regRead = new ethers . Contract ( mustAddr (sys. registry ), ABI_REGISTRY ,

rprov);
33
34 let deployFeeWei = 0n;
35 let sizeFeeWeiPerByte = 0n;
36 let requiredFeeWei = 0n;
37 let licId = 0;
38 let tosVer = 0;
39 try { deployFeeWei = BigInt ( await regRead . deployFeeWei ()); } catch {}
40 try { sizeFeeWeiPerByte = BigInt ( await regRead . sizeFeeWeiPerByte ()); }

catch {}
41 try {
42 requiredFeeWei = BigInt (await regRead . requiredDeployFeeWei (total));
43 } catch {
44 requiredFeeWei = deployFeeWei + ( sizeFeeWeiPerByte * BigInt (total));
45 }
46 try { licId = Number ( await regRead . activeLicenseId ()); } catch {}
47 try { tosVer = Number ( await regRead . tosVersion ()); } catch {}
48
49 dlog (`[${nowTs ()}] Deploy fee (base): ${ weiToEth ( deployFeeWei )} L1 `);
50 dlog (`[${nowTs ()}] Size fee: ${ weiToEth ( sizeFeeWeiPerByte )} L1 per byte `);
51 dlog (`[${nowTs ()}] Required deploy value: ${ weiToEth ( requiredFeeWei )} L1 `);
52 dlog (`[${nowTs ()}] Active licenseId =${licId} tosVersion =${ tosVer }`);
53
54 let recipient = signerAddr ;
55 if ( pricingRecipient .value.trim ()) recipient =

mustAddr ( pricingRecipient .value.trim ());
56
57 // chunking (fixed)
58 const chunkSize = CHUNK_SIZE ;
59 const numChunks = Math.ceil(total / chunkSize );
60
61 dlog (`[${nowTs ()}] Chunking : total=${total} chunkSize =${ chunkSize } (fixed)

chunks =${ numChunks }`);
62
63 const iface = new ethers . Interface ( ABI_STORE );
64 const ptrs = [];
65
66 for (let i=0;i< numChunks ;i++){
67 const start = i* chunkSize ;
68 const end = Math.min(total , start+ chunkSize );
69 const chunk = bytes.slice(start ,end);
70 dlog (`[${nowTs ()}] Chunk ${i+1}/${ numChunks }: store.write(${chunk. length }

bytes) `);
71 const tx = await store.write(chunk , { gasLimit : 30 _000_000 });
72 dlog(` tx.hash ${tx.hash }`);
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73 const rcpt = await tx.wait ();
74 dlog(` mined status =${rcpt. status }

gasUsed =${rcpt. gasUsed ?. toString ?.() ||"?"}`);
75 if (rcpt. status !== 1) throw new Error("chunk write reverted ");
76
77 let ptr = null;
78 for ( const lg of rcpt.logs) {
79 try {
80 const pl = iface. parseLog (lg);
81 if (pl?. name === " ChunkWritten ") { ptr = pl.args. pointer ; break; }
82 } catch {}
83 }
84 if (! ptr) throw new Error(" ChunkWritten not found");
85 ptrs.push(ptr);
86 dlog(` chunk pointer : ${ptr }`);
87 }
88
89 // pointer table chunk: 32 bytes each pointer
90 const table = new Uint8Array (32* numChunks );
91 for (let i=0;i< numChunks ;i++){
92 const addr = ethers . getAddress (ptrs[i]);
93 const ab = ethers . getBytes (addr);
94 table.set(ab , i*32 + 12);
95 }
96 dlog (`[${nowTs ()}] Writing pointer -table: ${table. length } bytes `);
97 const ttx = await store.write(table , { gasLimit : 30 _000_000 });
98 dlog(` table tx.hash ${ttx.hash }`);
99 const trc = await ttx.wait ();

100 dlog(` table mined status =${trc. status }
gasUsed =${trc. gasUsed ?. toString ?.() ||"?"}`);

101 if (trc. status !== 1) throw new Error("table write reverted ");
102
103 let tablePtr = null;
104 for ( const lg of trc.logs) {
105 try {
106 const pl = iface. parseLog (lg);
107 if (pl?. name === " ChunkWritten ") { tablePtr = pl.args. pointer ; break ; }
108 } catch {}
109 }
110 if (! tablePtr ) throw new Error("table ChunkWritten not found");
111 dlog (`[${nowTs ()}] Pointer -table pointer : ${ tablePtr }`);
112
113 // Register
114 const modelId = trained . modelId ;
115 let labelsForNft = null;
116 let labelNamesForNft = null;
117 if ( selectedTask === " binary_classification " && datasetNumeric ?. classes ) {
118 // Class labels for binary classification .
119 labelsForNft = [ datasetNumeric . classes [0], datasetNumeric . classes [1]];
120 } else if ( selectedTask === " multiclass_classification " &&

Array. isArray ( datasetNumeric ?. classes )) {
121 // Class labels for multiclass classification .
122 labelsForNft = datasetNumeric . classes ;
123 } else if ( selectedTask === " multilabel_classification " &&

Array. isArray ( datasetNumeric ?. labelNames )) {
124 // Multilabel :
125 // - `labelNames ` are the output label names (one per selected label

column )
126 // - `labels ` are the binary class labels ( defaults to 0/1)
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127 labelNamesForNft = datasetNumeric . labelNames ;
128 labelsForNft = ["0", "1"];
129 }
130 const featuresPacked = packNftFeatures ({
131 task: selectedTask ,
132 // Regression / binary / multiclass store the single label column name.

Multilabel stores labelNames instead .
133 labelName : ( selectedTask === " multilabel_classification ") ?

"( multilabel )" : datasetNumeric .labelName ,
134 labels : labelsForNft ,
135 labelNames : labelNamesForNft ,
136 featureNames : datasetNumeric . featureNames
137 });
138
139 const depth = trained . decoded .depth;
140 const nTrees = trained . decoded . nTrees ;
141 const nFeatures = trained . decoded . nFeatures ;

74



Appendix C

Reproducibility Checklist

• Determinism: keep training seeds, dataset hashes, and serialization version (GL1F v1/v2)
alongside the model NFT metadata.

• Quantization: record scaleQ and confirm no int32 overflow for feature magnitudes (Sec. 4.5).

• Bytes integrity: store and publish keccak256(modelBytes) and (optionally) the ordered
list of chunk pointers.

• Contract addresses: pin the deployed addresses of ModelRegistry, ModelNFT, ForestRuntime,
and ModelStore.

• Inference parity: test N random feature vectors: local JS inference vs on-chain predictView/predictTx
must match bit-for-bit.

• Pricing modes: if using paid-required mode, test: (a) fee enforcement on tx, (b) owner
EIP-712 view path, and (c) access-key view path.

• License + Terms: record the accepted tosVersion and licenseId at registration time.

75



Appendix D

References

76



Bibliography

[1] J. H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine.
The Annals of Statistics, 29(5):1189–1232, 2001. DOI: 10.1214/aos/1013203451.
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/
Greedy-function-approximation-A-gradient-boosting-machine/10.1214/aos/
1013203451.full.

[2] T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd
ACM SIGKDD, 2016. DOI: 10.1145/2939672.2939785. https://arxiv.org/abs/1603.02754.

[3] G. Ke et al. LightGBM: A Highly Efficient Gradient Boosting De-
cision Tree. NeurIPS, 2017. https://proceedings.neurips.cc/paper/
6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf.

[4] Ethereum Improvement Proposals. EIP-170: Contract code size limit. https://eips.ethereum.
org/EIPS/eip-170.

[5] Ethereum Improvement Proposals. EIP-712: Typed structured data hashing and signing.
https://eips.ethereum.org/EIPS/eip-712.

[6] Ethereum Improvement Proposals. EIP-1474: Remote procedure call specification (eth_call
supports an optional from). https://eips.ethereum.org/EIPS/eip-1474.

[7] 0xSequence. SSTORE2: cheaper storage in contract bytecode and reads via EXTCODECOPY.
https://github.com/0xsequence/sstore2.

[8] Creative Commons. Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) deed. https:
//creativecommons.org/licenses/by-sa/4.0/deed.en.

[9] Chainlist. Genesis L1 (chainId 29) network parameters. https://chainlist.org/chain/29.

77

https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boosting-machine/10.1214/aos/1013203451.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boosting-machine/10.1214/aos/1013203451.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boosting-machine/10.1214/aos/1013203451.full
https://arxiv.org/abs/1603.02754
https://proceedings.neurips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://proceedings.neurips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://eips.ethereum.org/EIPS/eip-170
https://eips.ethereum.org/EIPS/eip-170
https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-1474
https://github.com/0xsequence/sstore2
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://chainlist.org/chain/29

	I Scientific Paper
	Introduction
	What is GenesisL1 Forest?
	Why does this matter? (Importance)
	Contributions and scope

	Background
	Gradient boosting decision trees
	Why fixed-depth?
	On-chain constraints

	System Architecture
	High-level overview
	Model lifecycle

	Binary Formats and Storage
	Chunk contracts (GL1C)
	Pointer table
	Model format GL1F v1 (scalar output)
	Model format GL1F v2 (vector output)
	Why fixed-point (Q) values?

	On-Chain Inference
	Inference algorithm (scalar)
	View inference versus paid inference
	Complexity and gas intuition

	Governance, Licensing, and Search
	On-chain Terms and license
	Title-word search index

	Limitations and Future Work
	Limitations
	Possible extensions


	II Technical Documentation
	Quickstart
	Local development
	Network configuration

	End-to-End Workflow
	Dataset ingestion
	Training
	Serialization and deployment

	Contract Reference
	ModelStore
	ModelRegistry
	ForestRuntime
	ModelNFT and Marketplace

	Frontend Module Map
	Suite-Level Architecture and Navigation
	Page map and responsibilities
	System configuration model
	Wallet event bus and cross-page consistency
	Debug dock

	Forest Tab: The Model Catalog
	User-facing behavior
	Data plane: what contracts are queried
	Search and indexing
	Paging and performance considerations

	AI Store Tab: Marketplace Surface
	Listing semantics
	Query strategies
	Buy flow

	Model Tab: Inference, Pricing, and Access Control
	Model identity: tokenId vs modelId
	Feature packing and quantization
	Inference modes and pricing
	Mode 0: free view inference
	Mode 1: tips
	Mode 2: paid required

	API access keys and subscription plans
	Owner API key
	Subscriber access keys

	Owner settings and lifecycle actions

	My Tab: Portfolio View
	Create Tab: Model Studio
	Dataset sub-tab
	CSV parsing and type inference
	Label encoding per task
	Feature selection and exclusion rules
	Split preview and determinism
	Class imbalance handling
	Data Galaxy: 3D distribution and PCA

	Training sub-tab
	Exposed hyperparameters
	Model size estimate and on-chain constraints
	Training worker: isolation and responsiveness
	Learning-rate schedules
	Early stopping and final refit
	Heuristic hyperparameter search

	Local preview sub-tab
	Mint sub-tab

	Hyperparameter and Specification Reference
	Primary hyperparameters (Create->Training)
	Imbalance-handling parameters
	Fixed internal parameters

	Heuristic Search: Auto-Tuning in the Browser
	Candidate generation distribution
	Objective and selection
	Search history table and reproducibility
	Stopping and failure handling

	Feature Scoring and Interpretability
	Split usage counts
	Permutation importance on a budget
	Interpreting feature scores
	Limitations

	Terms, License, and Legal State
	Terms tab
	Debug dock revisited

	Engineering Notes and Edge Cases
	Determinism and reproducibility
	Numeric stability and scale selection
	Performance characteristics
	Security notes: signatures and deadlines


	III Appendices
	Binary Specification (Normative)
	Packed feature vectors
	Tree block (v1 and v2)

	Selected Source Excerpts (Informative)
	Solidity: ModelStore.sol (full; short)
	Solidity: ModelRegistry.sol (registration + access keys)
	Title-word AND search (for the Store UI)
	registerModel: mint NFT, bind bytes, enforce Terms + License
	Subscription access keys (paid-required models)

	Solidity: ForestRuntime.sol (view gating + chunk reads)
	View inference and fee-gating rationale
	Chunk addressing and cross-chunk reads via EXTCODECOPY

	JavaScript: train_worker.js (model serialization + a tree builder)
	Binary formats GL1F v1 and v2 (serialization)
	Regression tree builder (histogram/quantile thresholding)

	JavaScript: create_page.js (deployment chunking and pointer-table creation)

	Reproducibility Checklist
	References


