GENESISL1 ForesT (GL1F)

A Scientific Explanation & Technical Documentation for an On-Chain EVM
Gradient-Boosted Tree Studio

Prepared for the GenesisL.1 Forest alpha version source release by the Decentralized Science Labs

January 19, 2026

Abstract

GenesisL1 Forest is a browser-only “model studio” that trains gradient-boosted decision tree (GBDT)
ensembles locally, serializes them into a compact binary format, deploys them on the GenesisL1
network as ERC-721 “Model NFTs”, and supports deterministic on-chain inference through a
specialized runtime smart contract. This document is intentionally hybrid: Part I is written in the
style of a scientific paper (design goals, algorithmic choices, and formal specifications), and Part II
is written as technical documentation (developer workflows, contract APIs, and implementation
details). Throughout, we emphasize constraints imposed by Layer-1 execution (gas, determinism,
data availability), and we show how GenesisL1 Forest uses code-as-data chunk contracts and
fixed-point arithmetic to make on-chain inference practical.

Contents

I Scientific Paper

1 Introduction

1.1 What is GenesisLl1 Forest?
1.2 Why does this matter? (Importance)
1.3 Contributions and scope e

2 Background

2.1 Gradient boosting decision trees L Lo
2.2 Why fixed-depth? L
2.3 On-chain constraints e

3 System Architecture

3.1 High-level overview L e
3.2 Model lifecycle e
4 Binary Formats and Storage
4.1 Chunk contracts (GLI1C)o i
4.2 Pointer table
4.3 Model format GL1F v1 (scalar output)
4.4 Model format GL1F v2 (vector output)
4.5 Why fixed-point (Q) values?
5 On-Chain Inference
5.1 Inference algorithm (scalar)
5.2 View inference versus paid inference
5.3 Complexity and gas intuition

6 Governance, Licensing, and Search
6.1 On-chain Terms and license
6.2 Title-word search index e

7 Limitations and Future Work
7.1 Limitations
7.2 DPossible extensions e e

IT Technical Documentation

8

Quickstart
8.1 Local development
8.2 Network configuration

End-to-End Workflow

9.1 Dataset ingestion L L oL
9.2 Training L
9.3 Serialization and deployment 0L

10 Contract Reference

10.1 ModelStore e
10.2 ModelRegistry Lo
10.3 ForestRuntime
10.4 ModelNFT and Marketplace

11 Frontend Module Map

12 Suite-Level Architecture and Navigation

12.1 Page map and responsibilities
12.2 System configuration model oL
12.3 Wallet event bus and cross-page consistency
12.4 Debugdock

13 Forest Tab: The Model Catalog

13.1 User-facing behavior
13.2 Data plane: what contracts are queried
13.3 Search and indexing oo
13.4 Paging and performance considerations.

14 AI Store Tab: Marketplace Surface

14.1 Listing semantics Lo Lo oo
14.2 Query strategies
14.3 Buy flow

15 Model Tab: Inference, Pricing, and Access Control

15.1 Model identity: tokenld vs modelld
15.2 Feature packing and quantization
15.3 Inference modes and pricing
15.3.1 Mode 0O: free view inference
15.3.2 Mode 1: tips
15.3.3 Mode 2: paid requiredo
15.4 API access keys and subscription plans
15.4.1 Owner APTkey
15.4.2 Subscriber access keys
15.5 Owner settings and lifecycle actions

16 My Tab: Portfolio View

22

23
23
23

24
24
24
24

26
26
26
26
26

27

28
28
28
29
29

31
31
31
32
32

33
33
33
33

34
34
34
35
35
35
35
35
35
35
36

38

17 Create Tab: Model Studio
17.1 Dataset sub-tabo
17.1.1 CSV parsing and type inference L.
17.1.2 Label encoding per tasko
17.1.3 Feature selection and exclusionrules
17.1.4 Split preview and determinism Lo
17.1.5 Class imbalance handling
17.1.6 Data Galaxy: 3D distribution and PCA
17.2 Training sub-tabo L
17.2.1 Exposed hyperparameters L oo
17.2.2 Model size estimate and on-chain constraints
17.2.3 Training worker: isolation and responsiveness
17.2.4 Learning-rate schedules o0
17.2.5 Early stopping and final refit 0L
17.2.6 Heuristic hyperparameter search
17.3 Local preview sub-tab
17.4 Mint sub-tab e

18 Hyperparameter and Specification Reference
18.1 Primary hyperparameters (Create — Training)
18.2 Imbalance-handling parameters L Lo
18.3 Fixed internal parameters Lo Lo

19 Heuristic Search: Auto-Tuning in the Browser
19.1 Candidate generation distribution oo oL
19.2 Objective and selection e
19.3 Search history table and reproducibility
19.4 Stopping and failure handling oo

20 Feature Scoring and Interpretability
20.1 Split usage countsl e
20.2 Permutation importance on a budget L Lo oL
20.3 Interpreting feature scores L
20.4 Limitations oL e e e

21 Terms, License, and Legal State
21.1 Terms tab e e
21.2 Debug dock revisited

22 Engineering Notes and Edge Cases
22.1 Determinism and reproducibility L Lo
22.2 Numeric stability and scale selection
22.3 Performance characteristics L L
22.4 Security notes: signatures and deadlines oL oL

39
39
39
40
40
40
40
41
41
41
41
42
42
42
42
43
43

44
44
46
46

47
47
48
48
48

49
49
49
50
50

51
51
o1

IIT Appendices

A Binary Specification (Normative)
A.1 Packed feature vectors Lo
A2 Tree block (vland v2)

B Selected Source Excerpts (Informative)
B.1 Solidity: ModelStore.sol (full;short),
B.2 Solidity: ModelRegistry.sol (registration + access keys)
B.2.1 Title-word AND search (for the Store UI),
B.2.2 registerModel: mint NFT, bind bytes, enforce Terms + License
B.2.3 Subscription access keys (paid-required models)
B.3 Solidity: ForestRuntime.sol (view gating + chunk reads)
B.3.1 View inference and fee-gating rationale
B.3.2 Chunk addressing and cross-chunk reads via EXTCODECOPY
B.4 JavaScript: train_worker.js (model serialization + a tree builder)
B.4.1 Binary formats GL1F vl and v2 (serialization)
B.4.2 Regression tree builder (histogram/quantile thresholding)
B.5 JavaScript: create_page.js (deployment chunking and pointer-table creation) . . .

C Reproducibility Checklist

D References

54

55
95
95

56
56
o7
o7
o8
60
61
61
64
66
66
68
71

75

76

List of Figures

2.1

3.1

3.2

4.1

4.2

5.1
5.2

6.1

9.1
9.2

12.1

12.2

13.1

15.1

15.2

17.1

Fixed-depth binary tree indexing used by Forest. 12
GenesisL1 Forest architecture: the browser performs training and deployment, while

inference and model availability are enforced on-chain. 13
Model lifecycle in Forest: from in-browser training to on-chain inference and market-

place trading. e 14
Both the pointer table and the chunks are GL1C contracts. The runtime reads pointers

from the table and then reads model bytes from the chunks. 15
GL1F v1 byte layout (schematic). 16
Which inference entrypoints are valid under each pricing mode. 18
Signature-gated view inference prevents fee bypass via spoofed eth_call callers. . . 19
On-chain title-word index used for discovery without off-chain indexing. 20
Deployment pipeline used by the Create page. 25
Transaction-level deployment sequence. 25
Page map of the GenesisL1 Forest reference suite (shipped pages). “Model” is a

detail page reachable from catalog/search pages and from Create after minting. The
dashed arrow indicates that the active license and ToS version shown in Terms gates
Create actions. e e e 29
Conceptual structure of the debug dock. The implementation is intentionally browser-
compatibility focused: it uses navigator.clipboard when available and falls back

to document .execCommand ("copy") otherwise. 30
Read-path for rendering a page of Forest catalog cards. The Ul merges registry
summaries with NFT metadata and (optionally) marketplace listing state. 32
Decision tree for inference execution in the Model tab. Paid-required models permit

view inference only via signatures. oL L L. 36
Access-key workflow for paid-required models: a keypair is generated locally, recorded
on-chain with an expiry, and then used to authorize view inference through EIP-712
signatures. L 37

Create tab high-level pipeline. Dataset construction is prerequisite to training;
training produces serialized model bytes; preview performs interpretability and sanity
checks; mint writes bytes to chain and registers the NFT. 39

17.2 PCA-3 pipeline used by the Create tab’s 3D visualization. The implementation avoids
heavyweight numerical dependencies and is designed to remain responsive by yielding
to the browser event loop during long operations.

17.3 Minting pipeline: model bytes are chunked and written via ModelStore, then the
pointer-table pointer and metadata are registered in ModelRegistry.

20.1 Permutation importance pipeline as implemented in the Create tab. The output is a
feature ranking table shown in Local preview.

List of Tables

4.1 GL1F vl header. (Reserved bytes omitted for brevity.)

4.2 GL1F v2 header fields.

Part 1

Scientific Paper

Chapter 1

Introduction

1.1

What is GenesisLL1 Forest?

GenesisL1 Forest (“Forest” for short) is a self-contained web application that runs entirely in the
browser and connects to the GENESISL1 network (chain ID 29). It supports:

training fixed-depth gradient-boosted decision trees (GBDTS) for regression, binary classifica-
tion, multiclass classification, and multilabel classification;

serializing trained models into a compact binary format (GL1F v1 and v2);

deploying model bytes to an L1 chain using chunk contracts whose runtime bytecode begins
with GL1C;

minting a corresponding ERC-721 token (“Model NFT”) holding human-facing metadata; and

performing deterministic inference on-chain via a dedicated runtime contract.

Terminology

In this document, “forest” refers to an ensemble of decision trees (the classic machine-learning
meaning), and GENESISL1 refers to the EVM-compatible Genesis L1 network (chainld
29). Chain parameters and common wallet configuration are publicly listed by community
registries.[9]

1.2

Why does this matter? (Importance)

Deploying ML models on-chain is rarely practical with state-of-the-art neural networks, but tree
ensembles occupy a sweet spot: inference is a small set of integer comparisons and additions. This
makes them attractive for L1 use cases that require:

verifiability: anyone can reproduce inference from public model bytes and public input
features;

availability: model parameters remain accessible as long as the chain is accessible;

composability: other contracts can call into the model runtime and build applications on
top;

e« market mechanisms: ownership, licensing, and paid access can be expressed as smart
contracts; and

¢ education and auditability: model structure is inspectable, and the runtime behavior is
deterministic.

Forest specifically targets the intersection of (i) reproducible inference, (ii) lightweight models, and
(iii) a developer experience that does not require local ML toolchains.

1.3 Contributions and scope

This paper/documentation contributes:
1. a formal specification of the GL1F binary formats used by Forest;

2. a reference architecture for storing large immutable model blobs as contract bytecode (code-
as-data), akin to the SSTORE2 pattern;[7]

3. an on-chain inference procedure that supports paywalled usage without relying on spoofable
eth_call caller addresses;[5, 6]

4. an end-to-end workflow: dataset ingestion — in-browser training — on-chain deployment —
inference and marketplace.

10

Chapter 2

Background

2.1 Gradient boosting decision trees

Gradient boosting constructs an additive model of the form

M
Fu(z) = Fo(z) + Y v fm(), (2.1)
m=1

where each f,, is a weak learner (here: a fixed-depth decision tree), v is a learning rate, and each
new tree is fit to the negative gradient of a loss function. The classical formulation and many
practical variants are described by Friedman (2001).[1]

In Forest, trees are complete binary trees of a fixed depth d. Each internal node stores a feature
index f and a threshold 7; each leaf stores a value. Inference is a deterministic traversal based on
comparing the input feature value to the node threshold.

2.2 Why fixed-depth?

Variable-depth trees encode structure compactly, but fixed-depth trees simplify on-chain decoding:
o the number of internal nodes is 2¢ — 1, and leaves 2%;
e array indexing is arithmetic; no pointers are needed;

e byte offsets become compile-time-like expressions, enabling efficient EXTCODECOPY-based reads.

2.3 On-chain constraints

Smart-contract computation is constrained by gas costs, determinism, and limited access to external
data. Two constraints are especially relevant:

e Contract code size limit: EIP-170 caps runtime code size at 24,576 bytes on Ethereum
mainnet and many compatible chains.[4]

e RPC call semantics: eth_call accepts an optional from field, meaning off-chain callers
can simulate calls “as if” from arbitrary addresses.[6]

Forest’s design uses these constraints as primitives: the code size limit motivates chunking; spoofable
eth_call motivates signature-gated free inference for paid models.

11

EIP-712 domain separation

Owner/API key
signs typed data

Caller
(anyone)

@

EIP-712 sig

Y

ForestRuntime
verifies signature

th_call + packed featfires

Y

Inference
(extcodecopy reads)

Figure 2.1: Fixed-depth binary tree indexing used by Forest.

12

Chapter 3

System Architecture

3.1 High-level overview

Forest consists of three layers:

1. Browser application: dataset ingestion, model training (WebWorker), visualization, pack-
aging, and deployment transactions.

2. Smart contracts: registry (metadata, pricing, access), NFT contract, marketplace, model
storage chunks, and on-chain runtime inference.

3. Genesis L1 network: an EVM-compatible chain (chainld 29) reachable via JSON-RPC
(e.g., https://rpc.genesisll.org).[9)

Browser Studio |read/ Writ? GenesisLL1 RPC | tx + calls | Genesis L1 chain
(training + UI) | (JSON-RPC) (chainId=29)
On-chain inference + storage

Smart contracts
Registry / NFT / Store / Runtime / Market

Y

Chunk contracts
Runtime bytecode: GL1C || data

| |
| |
| |
| |
| |
| |
} |
| |
| extcodecopy l
| |
| |
| |
| |
| |
| |
| |
1 |

Figure 3.1: GenesisL1 Forest architecture: the browser performs training and deployment, while
inference and model availability are enforced on-chain.

13

3.2 Model lifecycle

A model in Forest typically follows this lifecycle:

1. Train: user trains a GBDT on a dataset in the browser.

2. Serialize: model parameters are quantized into fixed-point integers and encoded as GL1F
bytes.

3. Store bytes: bytes are split into chunks; each chunk is deployed as a pointer contract (GL1C

magic) using the on-chain store.

4. Publish: a pointer-table contract referencing the chunks is deployed; the registry mints an
NFT with metadata and binds it to a model ID.

5. Infer: users call the runtime for view or paid inference (depending on pricing mode).

6. Trade: the NFT can be listed and sold; ownership affects fee-free privileges and access-key
control.

Figure 3.2: Model lifecycle in Forest: from in-browser training to on-chain inference and marketplace

trading.

Train
(browser)

Serialize Chunk Register
GL1F GL1C + NFT
/ A4
Trade % Infer
(market) (view/tx)

14

Chapter 4

Binary Formats and Storage

4.1 Chunk contracts (GL1C)

Forest stores model bytes on-chain by deploying contracts whose runtime bytecode is:
GL1C (4 bytes) || DATA (0..24,572 bytes)

This is a variant of the well-known “store-as-code” pattern (often called SSTORE2).[7]
EIP-170 limits runtime bytecode size to 24,576 bytes, motivating the maximum chunk payload
size of 24,572 bytes (reserving 4 bytes for the magic prefix).[4]

4.2 Pointer table

To address models larger than a single chunk, Forest stores a pointer table as another GL1C contract.
The table payload is a sequence of 32-byte words, each containing an address in its low 20 bytes
(left-padded with zeros). The runtime inference engine reads this table via EXTCODECOPY to locate
chunk addresses.

GL1C DATA: 32-byte words (addresses)

Pointer-table contract runtime code

GL1C DATA: model bytes slice

Chunk contract runtime code

Figure 4.1: Both the pointer table and the chunks are GL1C contracts. The runtime reads pointers
from the table and then reads model bytes from the chunks.

4.3 Model format GL1F v1 (scalar output)

The v1 format encodes regression and binary classification models with a single scalar logit/score
output. It begins with a 24-byte header and then stores M trees.

15

Offset Field Notes

0..3 magic ASCII GL1F
4 version 1
6..7 nFeatures uintl6 LE
8..9 depth uint16 LE
10..13 nTrees uint32 LE
14..17 baseQ int32 LE (fixed-point)
18..21 scaleQ uint32 LE (feature/value scale)
24.. trees see below

Table 4.1: GL1F v1 header. (Reserved bytes omitted for brevity.)

Each tree stores internal nodes followed by leaves. With depth d:
#internal = 2¢ — 1, (4.1)

H#leaves = 27,

bytes/tree = (2¢ — 1) -8+ 2. 4.

GL1F | v=1 nFeat depth nTrees baseQ scaleQ trees...

v1 layout (bytes 0..23 header, then tree blocks)

Figure 4.2: GL1F v1 byte layout (schematic).

4.4 Model format GL1F v2 (vector output)

The v2 format supports multiclass and multilabel classification. It adds (i) an explicit number of
classes/labels and (ii) per-class base logits. Trees are stored class-major: all trees for class 0, then
class 1, and so on.

Offset Field Notes
0..3 magic ASCII GL1F
4 version 2
6..7 nFeatures uint16 LE
8..9 depth uint16 LE
10..13 treesPerClass uint32 LE
18..21 scaleQ uint32 LE
22..23 nClasses uint16 LE
24.. baselLogitsQQ int32 LE x nClasses
trees class-major blocks

Table 4.2: GL1F v2 header fields.

16

4.5 Why fixed-point (Q) values?

Floating point is not available in Solidity. Forest uses int32 fixed-point representations:
e input features are packed as int32 little-endian values, representing z - scaleQ;
e thresholds and leaf values are stored in the same quantized scale;

e the runtime accumulates to an int256 to avoid overflow across many trees.

17

Chapter 5

On-Chain Inference

5.1 Inference algorithm (scalar)

Inference for vl models is straightforward: for each tree, traverse from the root to a leaf using
comparisons xy > 7. Then add the leaf value to the accumulator. Pseudocode:

Listing 5.1: Reference pseudocode for scalar inference (v1).

1 acc = baseQ

2 for t in O0..nTrees-1:

3 idx = 0

4 for 1lvl in O..depth-1:

5 (f, thrQ) = node(t, idx)

6 xQ = featuresQ[f]

7 idx = (idx*2 + 2) if xQ > thrQ else (idx*2 + 1)
8 leafIndex = idx - (2 depth - 1)

9 acc += leaf(t, leafIndex)

10 returmn acc

5.2 View inference versus paid inference

Forest supports pricing modes:

o mode 0: free; mode 1: tips (fee optional); mode 2: paid-required.

pricingMode
0 free / 1 tips / 2 paid

0,1,2
/ 0,1 and owners)
Y

predictTx / predictClassTx predictView / predictClassView predictOwnerView
predictMultiTx predictMultiView predictAccessView
Y Y
Tx fee enforcement: View authorization:
if mode=2 and msg.value<feeWei, EIP-712 signature proves owner
only current NFT owner may call. or subscribed access key.

Figure 5.1: Which inference entrypoints are valid under each pricing mode.

18

A key subtlety is that off-chain read calls can spoof the caller address: eth_call includes an
optional from field.[6] Therefore, paid-required models must not allow free view inference gated
solely by msg.sender. Forest uses two mechanisms:

1. an on-chain transaction path (predictTx) that enforces payment unless the current NFT
owner calls it;

2. an EIP-712 signature-gated view path (predictOwnerView / predictAccessView) that proves
authorization without relying on the spoofable call sender.[5]

EIP-712 domain separation

[mm m m m e m e — o —— - — — &

Owner/API key
signs typed data

EIP-712 sig !
l Y I
Caller ¢th_call + packed featyres ForestRuntime |
(anyone) 1 | verifies signature |
Y
Inference
(extcodecopy reads)

Figure 5.2: Signature-gated view inference prevents fee bypass via spoofed eth_call callers.

5.3 Complexity and gas intuition

For scalar v1 models, inference is O(M - d) comparisons plus O(M - d) byte reads for thresholds
and feature indices. Reads are performed from contract bytecode via EXTCODECOPY, avoiding SLOAD.
This can be substantially cheaper for medium-sized blobs than storing the entire model in standard
storage.[7]

19

Chapter 6

Governance, Licensing, and Search

6.1 On-chain Terms and license

The registry records an active Terms-of-Service version and an active license identifier; deployments
must explicitly accept both. The default license is Creative Commons Attribution-ShareAlike 4.0
(CC BY-SA 4.0).[8]

6.2 Title-word search index

Forest maintains a simple on-chain inverted index mapping word hashes to token IDs. Search
performs an AND query by intersecting membership sets (optimized by scanning the first word list).
This supports discovery without requiring off-chain indexing infrastructure.

Title strin Tokenizer keccak256(word)
& (lowercase + split) _s wordHash
/ | \

_wordHasToken [wordHash] cleanFi ?# l1]\}](")‘1¥e11‘ﬂords [tokenId]

_wordTokens [wordHash]

tokenId[] [tokenId] -> bool wordHash[]

scan base list embership checks

AND search: select the first query word as the base list _wordTokens [w0].
For each tokenId in the base list, verify membership for the remaining words using
_wordHasToken [w] [tokenId].

Figure 6.1: On-chain title-word index used for discovery without off-chain indexing.

20

Chapter 7

Limitations and Future Work

7.1

7.2

Limitations

Model class: Only fixed-depth GBDTs are supported. This is intentional to keep inference
deterministic and compact.

Feature scaling: Users must supply or accept a scaling factor scaleQ to avoid int32 overflow.

Privacy: Inputs provided to on-chain transactions are public. Signature-gated view inference
can keep inputs off-chain, but off-chain callers still reveal inputs to their RPC provider.

Expressiveness: Trees are trained in-browser with a pragmatic histogram split search; they
are not intended to compete with highly optimized libraries like XGBoost or LightGBM.[2, 3]
Possible extensions

support for feature normalization metadata and standardized “model cards”;
optional Merkle commitments to datasets and training hyperparameters;

more granular access-control primitives and royalty standards.

21

Part 11

Technical Documentation

22

Chapter 8

Quickstart

8.1 Local development

The repository is a static web application and must be served over HTTP (not file://) so module
imports work.

Listing 8.1: Serve locally using Python.

python3 -m http.server 8080
open http://localhost:8080/ forest.html

8.2 Network configuration

Forest targets Genesis L1 (EVM, chainld 29). Public registries list the chain ID and common RPC
endpoints.[9]

23

Chapter 9

End-to-End Workflow

9.1 Dataset ingestion

Forest can ingest CSV files and infer label schemas for several tasks. Typical steps:
1. upload CSV; choose feature columns; choose label column(s);
2. perform numeric conversion and basic cleaning;

3. split into train/val/test with seeded shuffle; stratify for single-label classification.

9.2 Training

Training runs in a WebWorker and supports:
e regression with squared loss;
e binary classification with logistic loss;
o multiclass classification with softmax cross-entropy;

o multilabel classification with independent sigmoids.

Practical detail: scale selection

The create page chooses scale to preserve precision while ensuring quantized values fit
comfortably in int32, with a safety headroom below 2,147,483,647.

9.3 Serialization and deployment

Deployment consists of N + 2 transactions for a model split into N chunks:

1. N transactions: write each model chunk to ModelStore.write (deploying GL1C pointer
contracts);

2. 1 transaction: write the pointer-table (32-byte pointers) as another GL1C contract;

3. 1 transaction: call ModelRegistry.registerModel to mint an NF'T and store runtime pa-
rameters.

24

ModelStore.

Model bytes Split into write
(GL 1F) chunks (chunk 1)

(repeat N)
Y
ModelStore. ModelRegistry.
write registerModel
(pointer table) (mint NFT)

Figure 9.1: Deployment pipeline used by the Create page.

Tx 1.N Tx N+1 Tx N+4-2
Store.write » Store.write > Registry.registerModel
(chunk 1) (pointer table) (mint NFT)

Y

Events: each chunk write emits ChunkWritten(pointer,size);
the Create page parses logs to recover pointers, then packs them into the table (32 bytes each).

Figure 9.2: Transaction-level deployment sequence.

25

Chapter 10

Contract Reference

This chapter summarizes the contract suite. Full source listings are included in the appendices.

10.1 ModelStore

Purpose: store immutable byte chunks as runtime code (GL1C || DATA). The write function
deploys a minimal pointer contract whose runtime code is exactly the stored bytes, respecting the
EIP-170 size limit.[4]

10.2 ModelRegistry

Purpose: register models, bind them to NFTs, manage pricing and inference enablement, manage
access plans, and maintain a title-word search index.

10.3 ForestRuntime

Purpose: read model bytes from chunk contracts and perform deterministic inference. Supports
scalar (v1), vector (v2), multiclass argmax helpers, paid tx inference, and signature-gated view
inference for owners and subscribed API keys.

10.4 ModelNFT and Marketplace

ModelNFT: ERC-721 token with on-chain metadata (title, description, icon, packed feature
schema). Marketplace: optional listing and purchase contract for Model NFTs.

26

Chapter 11

Frontend Module Map

Forest is intentionally “no build step” for local use: ES modules load directly in the browser.

src/create_page. js: dataset, training orchestration, deployment.
src/train_worker. js: core training implementation.
src/local_infer. js: local model decoding and inference.
src/eth. js: provider 4 wallet state utilities.

src/abis. js: contract ABIs.

27

Chapter 12

Suite-Level Architecture and
Navigation

This chapter expands the original whitepaper with a suite-oriented perspective: rather than
viewing GENESISL1-FORESTas a set of contracts and a model format only, we describe the full
end-user and developer workflow as implemented by the reference web application contained in
genesis_forest_suite_debug_plotly_blue_v5.zip. The goal is to document (i) what each UI
tab does, (ii) which on-chain and off-chain components it touches, and (iii) how training, heuristic
search, and feature scoring are realized in a reproducible, deterministic way.

12.1 Page map and responsibilities

The reference suite is a static web application with multiple top-level pages (“tabs” in the navigation
bar). Each page is a single HTML document that imports a dedicated JavaScript module under
src/. The navigation bar is rendered consistently across pages via src/ui_nav.js, which also
centralizes wallet connection state and exposes a unified “system configuration” (RPC endpoint and
contract addresses).

While each page is independent, they share:

o a system configuration (RPC URL + contract addresses) stored in browser local storage;
o a wallet state (address, chainld) broadcast through a custom DOM event;
» a debug dock (collapsible log console) implemented by src/debug_dock. js;

o common utilities (formatting, unit conversion, task labeling, feature metadata packing) in
src/common. js.
12.2 System configuration model

All pages interpret “the chain” through a JSON system object loaded by loadSystem() from
localStorage. The configuration includes:

o rpc: RPC endpoint used for read calls (eth_call);

o store: ModelStore contract address (chunk writes);

28

Forest

Catalog en tokenld
|)\Q\

\ Model mint /
Al Store open tokenld open tokenld (Create
Listi > Details < .
istings L Model Studio

L J & Inference 1

p . open token |
My { Terms }
= J

Owned NFTs License & ToS

[Shared primitives: system config (RPC + addresses), wallet connect, debug dock, ABIs }

Figure 12.1: Page map of the GenesisLl Forest reference suite (shipped pages). “Model” is a
detail page reachable from catalog/search pages and from Create after minting. The dashed arrow
indicates that the active license and ToS version shown in Terms gates Create actions.

o registry: ModelRegistry address (model registration and metadata);
e nft: ModelNFT address (ERC-721 ownership and icon/features);

o runtime: ForestRuntime address (on-chain inference engine);

o market: ModelMarketplace address (listing/buying).

A key design choice is that the suite prefers the configured rpc for calls (reliability and consistent
gas limits for eth_call), but uses the browser wallet provider for signed transactions. This separation
reduces failures due to wallet providers that restrict large eth_call payloads.

12.3 Wallet event bus and cross-page consistency

The wallet module (src/eth.js) exports a small reactive state. When the wallet connects or the
chain changes, the suite dispatches the DOM event genesis_wallet_changed. Pages subscribe to
this event to refresh UI and enable/disable actions.

Operational implication. Pages never assume the user stays connected: every “write”
action re-checks the current wallet state (address and chainld) and fails early with
actionable messages.

12.4 Debug dock

The debug dock is a suite-wide observability component. It is intentionally simple—a text buffer
plus controls to collapse, clear, and copy logs. The dock also shows a coarse “state” label (e.g., idle,
training) and a connection summary (wallet address + chainld). Because it is a pure client-side
console, it is safe to run in untrusted contexts and can be embedded in static hosting.

29

Debug Dock
State: idle/training/deploying Conn: wallet . ..
Controls: Copy Clear Collapse/Expand
Output: timestamped log lines (append-only)

Figure 12.2: Conceptual structure of the debug dock. The implementation is intentionally
browser-compatibility focused: it uses navigator.clipboard when available and falls back to
document . execCommand ("copy") otherwise.

30

Chapter 13

Forest Tab: The Model Catalog

The Forest tab (forest.html + src/forest_page.js) is the discovery layer for all registered
models. It provides a lightweight catalog Ul with paging, keyword search, and optional filters by
NFT owner and model creator.

13.1 User-facing behavior
At a high level, the page renders a grid of model cards. Each card shows:
e model title and short description;
o task type (regression / binary / multiclass / multilabel);
o structural parameters (#features, #trees, depth, scale);
o pricing status (disabled/free/tips/paid) and fee;
e an icon (128 x 128 PNG) stored on-chain via ModelNFT.

Selecting a card navigates to the Model page with a tokenId query parameter.

13.2 Data plane: what contracts are queried

Forest is read-only. It queries:

1. Registry (ModelRegistry) for the authoritative model summary (inference enable flag,
pricing mode, fee, structural stats).

2. NFT (ModelNFT) for icon bytes and user-facing metadata.
3. Market (ModelMarketplace) optionally, to display current listing prices.

Because the icon is stored as bytes, the suite converts it to a PNG blob and uses an object URL.
This avoids needing external image hosting and keeps the catalog purely on-chain.

31

13.3 Search and indexing

The primary search mechanism is a word-hash index in the registry (see Figure 6.1). The Forest UI
tokenizes the search box into lowercase words of length > 2 and computes keccak256hashes. The
query is then executed via registry.searchTitleWords(wordHashes, page, pageSize).

Design trade-off. Word-hash search is robust to on-chain storage constraints: it avoids
storing large inverted indices, and it allows prefix-free matching by exact word equality.
However, it is not a semantic search: synonyms and typos are not matched unless the
title explicitly contains the queried word.

Forest additionally supports filtering by owner address and creator address. Owner filtering
uses the enumerable ERC-721 interface; creator filtering requires scanning because creator is stored
in the registry model struct and is not enumerable by creator in constant time.

13.4 Paging and performance considerations

Catalog pages are rendered in fixed-size batches (default 25). For large filters (e.g., creator scans),
the UI enforces a scan cap to avoid locking the browser. This is a deliberate stance: the reference
suite is a static web app and must remain responsive even on low-end devices.

Forest Ul
(forest__page.js)

Aw/ word hashes\usmg\mi(:i
\d

ModeIlNFT ModelRegistry ModelMarketplace

tokenlcon searchTitleWords getListing
tokenMetadata getModelSummary (optional)

Figure 13.1: Read-path for rendering a page of Forest catalog cards. The Ul merges registry
summaries with NFT metadata and (optionally) marketplace listing state.

32

Chapter 14

Al Store Tab: Marketplace Surface

The AT Store tab (aistore.html + src/market_page.js) is a specialized view over the same
underlying registry: it shows only models currently listed for sale in the marketplace contract.

14.1 Listing semantics

A listing is not a registry attribute; it lives in the marketplace contract. This separation is intentional:
e registry remains the canonical model catalog and runtime configuration;

» marketplace contains optional liquidity features (list, delist, buy) and can be replaced /upgraded
independently;

e models can exist without ever being listed.

14.2 Query strategies

The AI Store view supports keyword search similar to Forest. When no query is provided, it simply
pages through the marketplace’s listing list. When a query is provided, it first asks the registry for
matching token IDs via word-hash search, and then filters that set by checking listing status in the
marketplace.

Engineering note. Search in a listing-only view is expensive if implemented as “scan
all listings and filter by title”. The suite instead uses registry search as the first-stage
filter.

14.3 Buy flow

Buying is a single transaction market.buy(tokenId) with msg.value equal to the listing price.
Ownership transfers to the buyer as an ERC-721 transfer. After the transaction is mined, the Ul
refreshes listing status and owner address.

33

Chapter 15

Model Tab: Inference, Pricing, and
Access Control

The Model page (model.html + src/model_page.js) is the operational core of the suite. It
supports:

e loading model metadata and runtime parameters from chain;

e performing inference via view calls or paid transactions depending on pricing mode;
e managing owner settings (pricing, recipient, inference enable);

» marketplace actions (list/unlist/buy);

o managing API access keys and subscription plans for paid models.

15.1 Model identity: tokenld vs modelld

The suite uses two identifiers:
o tokenId: ERC-721 token identifier (human-facing, used in URLs).

o modelld: keccak256hash of the serialized model bytes (content-addressed, used by the
runtime and registry for storage binding).

The Model page loads by tokenId and then asks the registry for the corresponding modelId
and storage pointers (table pointer, chunking parameters).

15.2 Feature packing and quantization
On-chain inference consumes a packed feature vector packedFeaturesQ.
o Each feature is quantized as ¢; = round(z; - scaleQ).
e Each g; is clamped to signed 32-bit range and encoded little-endian.
e The packed byte array is 4 - Ngeatures Dytes long.
This is the same quantization used in the model format described in Section 4.5. The suite

maintains consistency by always reading scaleQ from the registry summary before packing.

34

15.3 Inference modes and pricing

The suite implements three pricing modes (Figure 5.1) and selects an execution path accordingly.

15.3.1 Mode 0: free view inference

When pricing mode is 0 (Free), any user can call the runtime view function (e.g., predictView) to
obtain a result without a transaction.

15.3.2 Mode 1: tips

When pricing mode is 1 (Tips), view inference remains enabled. Users may optionally send a
transaction with msg.value as a tip; the runtime emits an event containing the inference output
(because transactions cannot return values to the UI).

15.3.3 Mode 2: paid required

When pricing mode is 2 (Paid required), public view inference would allow fee bypass (because
eth_call cannot enforce payment). The suite therefore distinguishes three paid-required paths:

1. Paid transaction inference (anyone): predictTx with msg.value > fee.

2. Owner-signed view inference (NFT owner): predictOwnerView with an EIP-712 signature
from the NFT owner address.

3. Access-key view inference (subscribers): predictAccessView with an EIP-712 signature
from an API key whose access expiry is stored in the registry.

15.4 API access keys and subscription plans

A distinctive feature of FORESTis that paid-required models can be queried via view calls by parties
holding an API key. In the suite, an API key is a regular Ethereum keypair (address + private key).
The address is written to the registry with an expiry block number.

15.4.1 Owner API key

During minting (Create tab), the deployer specifies an owner access key address. The registry
sets this key’s expiry to the maximum value, granting perpetual access. The private key is never
placed on-chain; it must be stored securely by the model owner.

15.4.2 Subscriber access keys

Model owners can publish paid access plans. Users buy a plan by paying on-chain, which extends
their access key expiry. The Model page supports:

o generating an API keypair (locally) and storing the private key in the user’s possession;
o buying a plan for that key (transaction);

o using the key to sign an EIP-712 AccessView message (local signing) and calling predictAccessView
(view call).

35

User requests
inference

i

pricingMode=27

Call predictView Paid-required
(eth__call) path

Have
signature?

Call predictTx Call predictOwnerView
(transaction) or predictAccessView

Figure 15.1: Decision tree for inference execution in the Model tab. Paid-required models permit
view inference only via signatures.

15.5 Owner settings and lifecycle actions

If the connected wallet is the current NF'T owner, the Model page enables additional controls:
o toggle inference enabled/disabled;
e change pricing mode, fee, and recipient;
o set (rotate) the owner API access key address;
e list or unlist the NFT in the marketplace;
o burn and delete the model (permanent removal).

The last action, burn+delete, is intentionally irreversible: it removes the model record from the
registry and burns the NFT. This is relevant for moderation and for owners who wish to deprecate
models.

36

Generate keypair address Buy plan expiry recorde@ioned view inference
(ethers.Wallet.createRanglom) (tx to registry) (predictAccessView)
Figure 15.2: Access-key workflow for paid-required models: a keypair is generated locally, recorded
on-chain with an expiry, and then used to authorize view inference through EIP-712 signatures.

37

Chapter 16

My Tab: Portfolio View

The My page (my.html + src/my_page.js) lists models owned by the connected wallet. It is a
convenience view that builds on ERC-721 enumerability:

1. query balanceOf (owner);

2. iterate tokenO0fOwnerByIndex(owner,i);

3. for each tokenld, query registry summary and NFT metadata;
4. render a card grid identical in style to Forest.

The page is intentionally minimal: it performs no writes and does not expose listing or inference
actions directly (those are done in the Model page).

38

Chapter 17

Create Tab: Model Studio

The Create tab (create.html + src/create_page. js) is a browser-native training environment
for FORESTmodels. It consists of four sub-tabs:

1. Dataset: upload and inspect data; define task, label(s), features, and imbalance strategy.
2. Training: set hyperparameters; run training; optionally run heuristic search.
3. Local preview: inspect metrics and curves; compute feature scores; run local predictions.

4. Mint: choose metadata and pricing; deploy model bytes on-chain (chunking + register).

Dataset »y,meta Training madelByfes T,ocal preview apprpved model Mint
CSV — matrices worker + metrics metrics 4 explain chunk + register

Figure 17.1: Create tab high-level pipeline. Dataset construction is prerequisite to training; training
produces serialized model bytes; preview performs interpretability and sanity checks; mint writes
bytes to chain and registers the NFT.

17.1 Dataset sub-tab

17.1.1 CSV parsing and type inference

The suite accepts a CSV file as input and parses it in-browser using src/csv_parse. js. Parsing
features:

e supports quoted fields and escaped quotes;
o treats empty fields as missing;
o limits row count to a safety threshold (to avoid memory explosion in the browser);

e preserves raw strings initially; numeric conversion happens later.
After parsing, the user selects:

 a task type (regression / binary / multiclass / multilabel);
o label column(s) according to the task;

e a set of feature columns.

39

17.1.2 Label encoding per task
Dataset encoding differs by task:

Regression The label column must be numeric. Rows with non-finite label or feature values are
dropped. The label vector is a float array.

Binary classification The label column is categorical. The user chooses which label value cor-
responds to class 0 (negative) and class 1 (positive). Rows with other label values are
dropped.

Multiclass classification The label column is categorical. The user selects K > 2 allowed label
values and orders them; the order defines the integer class mapping 0..K — 1. Other labels are
dropped.

Multilabel classification The user selects L > 2 label columns, each expected to be parseable as
{0,1} (accepting common textual forms like true/false, yes/no). Rows where any selected
label is missing/invalid are dropped.

17.1.3 Feature selection and exclusion rules

The Create U lists all CSV columns with checkboxes. The selected label column (or selected label

columns for multilabel) are automatically excluded from the feature set to prevent leakage.

17.1.4 Split preview and determinism

The suite uses deterministic shuffling based on a user-provided seed. This ensures that training
results are reproducible across browsers, provided that floating-point behavior is stable.

For binary and multiclass tasks, the suite optionally performs stratified splitting so that
class proportions are similar across train/validation/test partitions. Stratification is disabled for
multilabel tasks because multi-dimensional label stratification is nontrivial and can be misleading.

17.1.5 Class imbalance handling

Class imbalance handling is a training-only mechanism: it influences gradients/hessians and therefore
learned splits and leaf values, but does not change the on-chain model format.
Three modes are provided:

e None: weights are all 1.

o Auto: weights are computed as the inverse frequency (binary: w. = N/(2n.); multiclass:
we = N/(K n.); multilabel: per-label positive weights based on neg/pos ratio).

e Manual: the user supplies weights directly.
Two additional controls refine behavior:
e cap: an upper bound on weights to avoid exploding updates on extremely rare classes.

o normalize: rescales weights so the average weight (approximate) is 1.

40

17.1.6 Data Galaxy: 3D distribution and PCA

The Dataset tab includes a 3D scatter visualization to help detect gross issues (separability, outliers,
label leakage). Two modes are supported:

1. Raw feature triplet: plot any three selected features.

2. PCA-3 projection: compute the first three principal components on a sampled subset of
rows and plot in that latent space.

PCA is computed in-browser without external numeric libraries. The implementation:
e samples up to a user-defined number of valid rows;
e standardizes features to zero mean and unit variance;

e uses repeated power iteration with Gram—Schmidt orthonormalization to estimate the top
three eigenvectors of the covariance matrix.

Reservoir sample Standardize Power iteration Project
valid rows (mean/var) + orthogonalize to 3D coords
Figure 17.2: PCA-3 pipeline used by the Create tab’s 3D visualization. The implementation avoids

heavyweight numerical dependencies and is designed to remain responsive by yielding to the browser
event loop during long operations.

17.2 Training sub-tab

17.2.1 Exposed hyperparameters

The Training sub-tab exposes a pragmatic set of hyperparameters that directly influence:
o model quality (bias/variance trade-offs);
o model size (bytes stored on-chain);
o inference cost (time/gas proportional to nrees - depth).

A detailed reference table is provided in Chapter 18.

17.2.2 Model size estimate and on-chain constraints

Before training, the suite estimates the serialized model size using the same formula as the on-chain
format specification (Appendix, Chapters 12+). It enforces two constraints:

1. Absolute byte limit: SIZE_LIMIT = 15,000,000. This is a suite-level guardrail to prevent
deploying extremely large models.

2. Tree-count bound for v2: registry stores nTrees as uint16. For multiclass/multilabel
models (format v2), total trees equals treesPerClass X nClasses and must fit in 65535.

If the user selects parameters that violate constraints, the suite automatically clamps them
(reducing trees in steps of 25, then reducing depth) and keeps UT controls in sync.

41

17.2.3 Training worker: isolation and responsiveness

Training is executed in a Web Worker (src/train_worker.js) to keep the UI responsive. The
main thread sends:

e numeric feature matrix X as a flat Float64Array;

o label vector(s) y (Float64Array for regression; Uint8Array/Int32Array encodings for classifica-
tion);

o task metadata (#features, #classes/labels, feature min/range);
e hyperparameters and imbalance settings.

The worker posts back:

o progress updates every tree (training/val metrics); and

e a final done message containing modelBytes and a meta summary.

17.2.4 Learning-rate schedules

Besides a constant learning rate, two schedules are implemented:

Plateau schedule If validation loss does not improve for a specified number of trees, multiply the
learning rate by (1 — dropPct/100), but do not go below minLR.

Piecewise schedule The user specifies explicit ranges of tree indices and learning rates (e.g.,
“1-100 0.1”). Ranges are 1-indexed and inclusive.

These schedules are applied inside the worker as a function of tree index and observed validation

metric.

17.2.5 Early stopping and final refit

When early stopping is enabled, training monitors validation loss and records the best iteration.
The suite optionally performs a final refit stage:

1. train on train/val split with early stopping to select bestIter;

2. retrain from scratch on train+val for a fixed tree budget bestIter, with early stopping
disabled.

This mirrors common practice in boosting workflows: validation is used for model selection, then

the selected configuration is fit on the largest available non-test dataset.

17.2.6 Heuristic hyperparameter search

The Training tab can run a lightweight heuristic search (random mutation around a pivot configu-
ration) to find improved hyperparameters without leaving the browser. The implementation and
distributions are detailed in Chapter 19.

42

17.3 Local preview sub-tab
The Local preview tab is a safety and interpretability gate before minting. It:
¢ decodes the trained model bytes locally using the same format definitions as the runtime;
o displays best train/val/test metrics reported by the worker;
e plots the per-tree metric curves;
» computes feature scores (split usage + permutation importance);

« offers a per-row prediction playground to compare predicted vs actual labels.

17.4 Mint sub-tab

Minting connects the browser-trained model to the on-chain system. It consists of:
1. selecting metadata (name, description, 128 x 128 PNG icon);
2. selecting pricing mode and fee recipient;
3. generating (or supplying) an owner APT access key;
4. agreeing to the currently-active Terms and license;
5. writing model bytes to the ModelStore as chunks;
6. writing the pointer-table contract;
7. registering the model in the registry and minting the NFT.

The suite estimates required deploy value via requiredDeployFeeWei(totalBytes) and sepa-
rately reminds the user that gas is paid in addition to that deploy value.

ModelStore.
modelBytes Split into write
(GL1F) 24 000B chunks (chunk i)

(repeat N)

Y

ModelStore. ModelRegistry.
write registerModel
(pointer table) (mint NFT)

Figure 17.3: Minting pipeline: model bytes are chunked and written via ModelStore, then the
pointer-table pointer and metadata are registered in ModelRegistry.

43

Chapter 18

Hyperparameter and Specification
Reference

This chapter consolidates the training hyperparameters exposed by the Create tab, links them to
the worker implementation, and highlights interactions with on-chain constraints.

18.1 Primary hyperparameters (Create — Training)

Name

Ul control

Range

Default

Meaning / implementation
notes

Number of trees

Depth

Learning rate

Min leaf samples

treesNum

depthNum

1rNum

minLeafNum

10-5000 (v1)

1-12

0.001-1

1-1000

250

0.05

10

44

Boosting rounds for vl (regres-
sion/binary). For v2 (multi-
class/multilabel), interpreted as
trees per class/label; total trees =
trees X K. Clamped for size and
for uint16 total-tree bound.
Maximum depth of each tree. The
model stores a full binary tree of
depth depth; missing splits are rep-
resented by forced nodes (threshold
= INT32_MAX) so that inference
is constant-time per tree.

Step size multiplier applied to leaf
updates. In worker, regression uses
A = n7; classification uses Newton
step A = —nG/(H + N).
Minimum number of training sam-
ples required in each child of a split;
if violated, the node becomes forced
(no further splits).

Name

Ul control

Range Default

Meaning /
notes

implementation

Bins

Binning mode

Seed

Train split

Validation split

Early stopping

Patience

LR schedule

Refit train+val

Heuristic search

Search rounds

binsNum

binningMode

seedNum

8-512 32

{linear, linear

tile}

quan-

1-2,147,483,647 42

trainSplitNumb50%-90% 70%
valSplitNum 5%—40% 20%
earlyStopOn on/off on
patienceNum 1-500 25
1rSchedMode none/plateau/piecewdnee
refitOn on/off off
heuristicSearohfanff off
heuristicSearthRdhds 10

Histogram bin count used for ap-
proximate split search. Higher bins
increase training time and (slightly)
improve split resolution; does not
affect model size because thresh-
olds are stored as int32 regardless
of bins.

Linear mode uses uniform bins be-
tween feature min and max. Quan-
tile mode precomputes per-feature
thresholds from a sample and bins
by empirical quantiles.

Seed for deterministic shuffling, fea-
ture sampling, and heuristic search
PRNG. The worker uses xorshift32
to generate reproducible pseudo-
randomness.

Fraction of usable rows assigned to
training. Remaining rows are split
between validation and test.
Fraction of usable rows assigned to
validation. Test split is implied: 1—
train — val.

If enabled, stop when valida-
tion metric has not improved for
patience trees. Best iteration is
recorded.

Number of non-improving trees tol-
erated before early stopping trig-
gers.

Optional schedule that modifies
learning rate over time. Plateau
schedule reacts to validation metric
stagnation; piecewise schedule uses
explicit tree-index ranges.

If enabled and early stopping is on,
the suite performs a second training
pass on train+val using the selected
best tree budget.

Enables multiple training rounds
with mutated hyperparameters,
tracking best validation metric.
Maximum number of heuristic-
search candidate rounds.

45

18.2 Imbalance-handling parameters

Imbalance parameters appear on the Dataset tab when a classification task is selected.

Name UI control Default Meaning / implementation
notes
Mode imbMode none none/auto/manual. Auto com-

putes inverse-frequency weights;
manual exposes per-class (or per-
label) inputs.

Cap imbCap 20 Upper bound on weights. Prevents
extreme gradients when classes are
extremely rare.

Normalize imbNormalize on Rescales weights so the weighted
average is approximately 1. Helps
keep learning-rate interpretation
stable.

Stratify split imbStratify on Only for binary/multiclass. Uses
label-stratified splits to keep class
proportions stable across train/-
val/test.

Manual weights dynamic 1 Binary: wO,wl. Multiclass: per-
class. Multilabel: per-label positive
weights (pos_ weight style).

18.3 Fixed internal parameters

Some important training choices are fixed in code for simplicity and determinism:
o Column sampling: at each split, the worker samples [/Nfeatures | candidate features.
¢ Regularization: classification uses A = 1 in the Newton leaf formula and split gain.

o Model topology: each tree is stored as a complete binary tree of depth depth; forced nodes
encode early termination.

o Quantile threshold sampling: quantile binning uses a fixed sample budget (default 50k
rows) from the (shuffled) training set.

46

16

Chapter 19

Heuristic Search: Auto-Tuning in the
Browser

The heuristic search facility in the Create tab is designed for “good enough” tuning without requiring
external services. It behaves as a bounded random search with memory:

1. start from the user’s base hyperparameters;
2. train a candidate model and evaluate its validation metric;
3. maintain the best candidate so far;

4. generate the next candidate by mutating either the current best (75% probability) or the
original base configuration (25% probability);

5. repeat for a fixed number of rounds or until stopped.

19.1 Candidate generation distribution

Candidate generation uses a deterministic xorshift32 PRNG seeded from the user-provided seed.
Parameters are perturbed multiplicatively (trees, learning rate, minLeaf) and additively (depth),
then clamped to Ul bounds and to on-chain size limits.

Listing 19.1: Excerpt of heuristic candidate generation (Create tab).

// pivot = bestParams with prob 0.75, else baseParams

const treesFactor = 2 *x ((rand01()-0.5) * 1.4); // ~[0.62..1.62]
let trees = roundTo25(pivot.trees * treesFactor);

aStep = round((rand01()-0.5) * 4); /7 [-2..2]

let depth = clamp(pivot.depth + aStep);

const 1lrFactor = 10 ** ((rand01()-0.5) * 0.8); // ~[0.40..2.51]
let 1lr = clamp(pivot.lr * lrFactor);

const mlFactor = 2 ** ((rand01()-0.5) * 2.0); // ~[0.5..2]
let minLeaf = clamp(round(pivot.minLeaf * mlFactor));

// plateau schedule params are optionally perturbed

//

47

17 // final clamp: enforce size limit and uintl6 tree bounds
18 const cl = clampForSize(trees, depth, task, nClasses);
19 return { ...pivot, trees: cl.trees, depth: cl.depth, lr, minLeaf, ... };

19.2 Objective and selection

The search compares candidates using bestValMetric reported by the worker:
o regression: validation MSE (lower is better);
o classification: validation log loss (lower is better).

Accuracy is reported for diagnostics but is not the primary objective. This is intentional: log
loss is smoother and more sensitive to probability calibration than accuracy.

19.3 Search history table and reproducibility

Fach round appends a row to a “Search history” table containing:
e round number;
e selected hyperparameters;
e best validation metric and whether it improved the incumbent.

Because randomness is seeded deterministically and the worker’s training loop is deterministic
given the shuffled splits, the entire search is reproducible if run with the same dataset, same seed,
and same browser floating-point behavior.

19.4 Stopping and failure handling

A “Stop” control terminates the active worker and aborts the search loop. The suite is careful to
unwind pending Promises so that Ul state returns to a consistent idle mode.

48

Chapter 20

Feature Scoring and Interpretability

The Create tab implements feature scoring to help users understand and validate a model before
minting. The goal is not to provide a full interpretability suite, but to supply two complementary
signals:

1. Split usage: how often a feature is used in learned (non-forced) internal nodes.

2. Permutation importance: how much the test metric degrades when a feature is randomly
permuted.

20.1 Split usage counts

For a fixed-depth tree representation, many internal nodes may be “forced” (no learned split). These
are encoded by thr = INT32_MAX. The feature scoring logic ignores forced nodes when counting
split usage.

Split usage is fast to compute: for each tree and each internal node, increment count [feat] if
the node is not forced.

20.2 Permutation importance on a budget

Permutation importance is computed on a sampled subset of the test split to keep the UI responsive.
The procedure is:

1. select a sample of test rows (cap at 1024 by default, further reduced adaptively);
2. compute baseline predictions and baseline metric;
3. for each feature j:

copy the feature matrix subset;
b

)
)

(¢) recompute predictions and metric;
)

(a
(

permute column j (shuffle indices);

(d) record Aloss (increase in loss) and Aacc (drop in accuracy, if applicable).

The suite adaptively chooses the test-sample size based on an estimated compute budget
proportional to (Nfeatures * Ntrees - depth).

49

Baseline metric For each feature Re-evaluate Rank features

on test sample permute column metric by Aloss
Figure 20.1: Permutation importance pipeline as implemented in the Create tab. The output is a
feature ranking table shown in Local preview.

20.3 Interpreting feature scores

e A high split count suggests that the feature frequently yields useful partitions, but it does not
directly quantify contribution magnitude.

o A high permutation Aloss indicates that the feature contains information that the model relies
on (possibly redundantly with other features).

o Negative Aloss (loss improves when permuted) can occur due to sampling noise or because
the feature introduces spurious correlations.

20.4 Limitations

Permutation importance is a post-hoc diagnostic. It is sensitive to correlated features: if two features
are strongly correlated, permuting one may have limited effect because the other retains similar
information. The suite therefore presents split usage alongside permutation scores to provide a
second perspective.

50

Chapter 21

Terms, License, and Legal State

This chapter documents the suite page that surfaces the protocol’s active license and Terms of
Service (ToS), and explains how these values are used by the Create flow. The shipped suite is
intentionally read-only with respect to legal state: it can display the current parameters, but it does
not include any privileged deployment, moderation, or governance console.

21.1 Terms tab

The Terms page (terms.html + src/terms_page. js) is read-only and displays:
o the currently active license (ID, name, URL);
e deploy and listing fees;
e the current ToS version and full ToS text stored on-chain.

This is important for Create: minting requires the user to agree to the active license and ToS
version, and the mint transaction records those IDs.

21.2 Debug dock revisited

All pages include the debug dock described in Section 12. For Create, the dock is particularly
valuable because the end-to-end flow involves multiple sequential transactions (chunk writes, pointer-
table deployment, registry registration, and optional listing) interleaved with long-running worker
computations (training, evaluation, feature scoring).

51

Chapter 22

Engineering Notes and Edge Cases

This chapter collects practical engineering considerations that arise from implementing an on-chain
GBDT suite in the browser.

22.1 Determinism and reproducibility

The suite is designed to be deterministic given (dataset, selected columns, seed, hyperparameters):
o dataset splits are generated via seeded shuffling;
o feature subsampling uses a deterministic xorshift PRNG;
e quantile thresholds are computed from a deterministic prefix sample.

However, full cross-platform bitwise determinism is not guaranteed: JavaScript floating-point
behavior is standardized, but subtle differences in optimization, math library implementations, and
worker scheduling can produce small numeric differences. The model format’s quantization helps
stabilize results by rounding thresholds and leaf values to int32.

22.2 Numeric stability and scale selection

The suite chooses scaleQ to maximize precision without overflow. It sets

scaleQ = min (106 {27147,480,000 J {2,147,480,000 D

max |z| max |y|

for regression, and omits the y bound for classification.

22.3 Performance characteristics
Training time scales approximately with:
O(ntrees - gdepth, nrows)

modulated by histogram binning and feature subsampling. Inference time (both local and on-chain)
scales with O(nyrees - depth).

52

22.4 Security notes: signatures and deadlines
Signature-based view inference (OwnerView and AccessView) uses:

o EIP-712 domain separation (chainld + verifying contract);

o a short deadline (unix timestamp) to reduce replay window;

o a hash of packed features (keccak2560f packed bytes) rather than raw feature bytes in typed
data, keeping the signature payload small.

These measures ensure that a signature cannot be replayed on other chains or other runtime
deployments, and limit the time window in which it is valid.

93

Part 111

Appendices

o4

Appendix A

Binary Specification (Normative)

A.1 Packed feature vectors

For a model with n features, the runtime expects a byte array of length 4n. Feature i is encoded as
little-endian int32 at offset 47 and represents |x; - scaleQ].

A.2 Tree block (vl and v2)

Let d be depth, P = 2% I = P — 1. Then for each tree:
e internal nodes: I records, each 8 bytes: ul6 feature + 132 thresholdQ + ul6 reserved.

e leaves: P records, each 4 bytes: 132 leafQ.

95

16

25

27
28
29

Appendix B

Selected Source Excerpts (Informative)

Note

This appendix includes selected excerpts from the bundled source tree under genesis/. The
full source remains in the project folder, but is not typeset here in full to keep the document
to a manageable length.

B.1 Solidity: ModelStore.sol (full; short)

// SPDX-License-Identifier: MIT
pragma solidity ~0.8.20;

/// @notice Stores arbitrary byte chunks on-chain by deploying a tiny pointer
contract

/77 whose runtime bytecode is: MAGIC(4 bytes) || DATA.

V24

/// Design goals:

/// - On-chain writes avoid SSTORE-heavy storage (cheaper for medium blobs).

/// - Reads are easy off-chain via eth_getCode / exztcodecopy.

/// - Compatible with euvmVersion=istanbul (no post-Istanbul opcodes required).
contract ModelStore {
// 0x47 Oz4fc 0xz31 0z43 = "GLI1C" (GenesisLl Chunk)

uint32 public constant MAGIC = 0x474c3143;
event ChunkWritten (address indexed pointer, uint256 size);

/// @notice Deploy a new pointer contract containing (MAGIC || data) as its
runtime bytecode.

/// @dev Runtime code size must respect EIP-170 (24,576 bytes). We reserve 4
bytes for MAGIC.

function write(bytes calldata data) external returns (address pointer) {
uint256 dlen = data.length;
require (dlen <= 24 _572, "CHUNK_TOO_LARGE");

uint256 rlen = dlen + 4; // runtime length
bytes memory init = new bytes(14 + rlemn);

assembly ("memory-safe") {
let p := add(init, 32)

// Minimal init-code:

56

30 // PUSH2 rlen

31 // PUSH1 0OzOe

32 // PUSH1 0z00

33 // CODECOPY

34 // PUSH2 rlen

35 // PUSH1 0z00

36 // RETURN

37 mstore8(p, 0x61)

38 mstore8(add(p, 1), shr(8, rlen))

39 mstore8(add(p, 2), and(rlen, Oxff))
40 mstore8(add(p, 3), 0x60)

41 mstore8(add(p, 4), 0x0Oe)

42 mstore8(add(p, 5), 0x60)

43 mstore8(add(p, 6), 0x00)

44 mstore8(add(p, 7), 0x39)

45 mstore8(add(p, 8), 0x61)

46 mstore8(add(p, 9), shr(8, rlen))

47 mstore8(add(p, 10), and(rlemn, Oxff))
48 mstore8(add(p, 11), 0x60)

49 mstore8(add(p, 12), 0x00)

mstore8(add(p, 13), 0xf3)

// Runtime start
let r := add(p, 14)

// MAGIC (4 bytes)
mstore(r, shl (224, 0x474c3143))

// DATA
calldatacopy(add(r, 4), data.offset, dlen)

(e}

[S IS BV, IS, BiG) JNe) BiG) Be) B, e |
ot C b

Ne}

60

61 // CREATE

62 pointer := create(0, p, mload(init))

63 }

64

65 require (pointer != address(0), "CREATE_FAIL");
66 emit ChunkWritten(pointer, dlen);

67 }

68 }

B.2 Solidity: ModelRegistry.sol (registration + access keys)

B.2.1 Titlee-word AND search (for the Store UI)

1 uint16 nFeatures,
2 uintl6 nTrees,

3 uint16 depth,

1 int32 baseQ,

5 uint32 scaleQ,

6 bool inferenceEnabled,
7 uint8 pricingMode,

8 uint256 feeWei,

9 address feeRecipient
10) {

11 Model storage m = models[modelId];
12 require(m.exists && m.active, "NF");

o7

14

15

17

45

}

// AND search on words (exact hash match),
function searchTitleWords (bytes32[] calldata words, uint256 cursor,
limit) external view returns (uint256[] memory tokenIds, uint256

B.2.2

return (m.tablePtr, m.chunkSize, m.numChunks, m.totalBytes, m.nFeatures,

m.nTrees, m.depth, m.baseQ, m.scaleQ, m.inferenceEnabled,
m.pricingMode, m.feeWei, m.feeRecipient);

nextCursor) {
if (words.length == 0) return (new uint256[](0), 0);

uint256 [] storage baselist = _wordTokens [words[0]];
uint256 n = baselist.length;
if (cursor >= n) return (mew uint256[]1(0), 0);

uint256 [] memory tmp = new uint256[](limit);
uint256 found = O;
uint256 i = cursor;

for (; i < n && found < limit; i++) {
uint256 tid = baselList[i];
bytes32 mid modelIdByTokenId [tid];

if (mid == bytes32(0)) continue;
Model storage m = models[mid];

if (!'m.exists || !m.active) continue;
bool ok = true;

for (uint256 w = 1; w < words.length; w++) {
if (! _wordHasToken[words[w]][tid]) { ok = false; break;
}

if ('ok) continue;
tmp [found++] = tid;
tokenIds = new uint256[] (found) ;

for (uint256 k = 0; k < found; k++) tokenIdsI[k]
nextCursor = (i >= n) 7?2 0 : 1ij;

tmp [k];

paginated over the first word list.

uint256

}

registerModel: mint NFT, bind bytes, enforce Terms + License

function registerModel (

bytes32 modelld,

address tablePtr,

uint32 chunkSize,

uint32 numChunks,

uint32 totalBytes,

uintl16 nFeatures,

uintl1l6 nTrees,

uint16 depth,

int32 baseQ,

uint32 scaleQ,

string calldata title_,
string calldata description_,
bytes calldata iconPng32,
string calldata featuresPacked,

o8

16 bytes32[] calldata titleWordHashes,

17 uint8 pricingMode,

18 uint256 feeWei,

19 address recipient,

20 uint32 tosVersionAccepted_,

21 uint32 licenseIdAccepted_,

22 address ownerKey

23) external payable returns (uint256 tokenId) {

24 require (address (modelNFT) != address(0), "NFT_NOT_SET");
25 require (modelId != bytes32(0), "MIDO");

26 require (!models [modelId].exists, "EXISTS");

27 uint256 requiredFee = requiredDeployFeeWei(totalBytes);
28 require (msg.value == requiredFee, "DEPLOY_FEE");

29

30 require (tosVersionAccepted_ == tosVersion, "TOS");

31 require(licenseIdAccepted_ == activelicenseId, "LIC");
32 require (ownerKey != address(0), "OWNER_KEY");

33

34 require (bytes(title_).length > 0, "TITLE");

35 require (bytes (description_).length > 0, "DESC");

36 require (iconPng32.length > 0, "ICON");

37 require (numChunks > 0, "NO_CHUNKS");

38 require (chunkSize > 0, "CHUNKO");

39

40 // fee rules

41 if (pricingMode == 0) {

42 feeWei = 0;

43 } else {

44 require (feeWei > 0, "FEE_ZERO");

45 }

46 if (recipient == address(0)) recipient = msg.sender;
47

48 // mint NFT

49 tokenId = modelNFT.mintTo(msg.sender, title_, description_, iconPng32,

featuresPacked) ;
// Grant the model owner a perpetual API access key.
accessExpiry[modelId] [ownerKey] = type(uint64) .max;

&1 e}

52 emit OwnerAccessKeySet (modelId, ownerKey, type(uint64).max);
53

54 Model storage m = models[modelId];
55 m.exists = true;

56 m.active = true;

57 m.modellId = modelId;

58

59 m.tablePtr = tablePtr;

60 m.chunkSize = chunkSize;

61 m.numChunks = numChunks;

62 m.totalBytes = totalBytes;
63

64 m.nFeatures = nFeatures;

65 m.nTrees = nTrees;

66 m.depth = depth;

67 m.baseQ = baseQ;

68 m.scaleQ = scaleQ;

69

70 m.inferenceEnabled = true;
71 m.pricingMode = pricingMode;
72 m.feeWei = feeWei;

7: m.feeRecipient = recipient;

99

-~
[S2EN

00 00 00 = N = I3
D — O © 0

oo
w

11
12
13

15
16
17
18
19

m.creator = msg.sender;
m.tosVersionAccepted = tosVersionAccepted_;
m.licenseIdAccepted = licenseldAccepted_;
m.tokenId = tokenId;
modelIdByTokenId [tokenId] = modelld;
tokenIdByModelId[modelId] = tokenId;
// title index
if (titleWordHashes.length > 0) {
bytes32[] storage arr = _tokenWords[tokenId];
for (uint256 i 0; 1 < titleWordHashes.length; i++) {
bytes32 wh = titleWordHashes[i];
if (wh == bytes32(0)) continue;
if (_wordHasToken[wh] [tokenId]) continue;
_wordHasToken[wh] [tokenId] = true;
_wordTokens [wh].push(tokenId) ;
arr.push(wh);
}
}
// forward deploy fee to owner
if (requiredFee > 0) {
(bool ok,) = owner.call{value: requiredFeel}("");
require (ok, "FEE_SEND");
}
emit ModelRegistered(tokenId, modelId, msg.sender);
}
B.2.3 Subscription access keys (paid-required models)
// ===== API Access Key Plans =====
function createAccessPlan(bytes32 modelId, uint32 durationBlocks, uint256
priceWei, bool active) external returns (uint8 planId) {
_requireTokenOwnerByModelId (modelId);
require (models [modelId].pricingMode == 2, "MODE");
require (durationBlocks > 0, "DURO");
planId = accessPlanCount [modelId] + 1;
require (planId != 0, "PLAN_OVERFLOW"); // uwint8 overflow
accessPlanCount [modelId] = planId;
_accessPlans [modelId] [planId] = AccessPlan({durationBlocks:
durationBlocks, priceWei: priceWei, active: activel);
emit AccessPlanSet(modelIld, planId, durationBlocks, priceWei, active);
}
function setAccessPlan(bytes32 modelId, uint8 planId, uint32 durationBlocks,
uint256 priceWei, bool active) external {
_requireTokenOwnerByModelId (modelId) ;
require (models [modelId].pricingMode == 2, "MODE");
require (planId > O && planId <= accessPlanCount [modelId], "PLAN_ID");
require (durationBlocks > 0, "DURO");
_accessPlans [modelId] [planId] = AccessPlan({durationBlocks:
durationBlocks, priceWei: priceWei, active: activel);
emit AccessPlanSet(modelId, planId, durationBlocks, priceWei, active);

60

ot Ot Ot
o= O

o))

ot Ut

y O O Ot Ut Ot Ut :
= O © 00~ O Ot W

}

function getAccessPlan(bytes32 modelld, uint8 planId) external view returns

}

(uint32 durationBlocks, uint256 priceWei, bool active) {
AccessPlan memory p = _accessPlans[modelId][planId];
return (p.durationBlocks, p.priceWei, p.active);

function buyAccess(bytes32 modelId, uint8 planId, address key) external

}

payable returns (uint64 newExpiry) {

require (key != address(0), "KEYO");

Model storage m = models[modelId];

require(m.exists && m.active, "NF");
require(m.pricingMode == 2, "MODE");

AccessPlan memory p = _accessPlans[modelId][planId];
require(p.active, "PLAN_OFF");

require (msg.value == p.priceWei, "PRICE");

uint64 cur = accessExpiry[modelId]([key];
uint64 start = cur > uint64(block.number) ? cur : uint64(block.number);
newExpiry = start + uint64(p.durationBlocks);
accessExpiry [modelId] [key] = newExpiry;

// payout to current owner / recipient

address payTo = m.feeRecipient;

if (payTo == address(0)) {
payTo = modelNFT.ownerOf (m.tokenId) ;

}

if (msg.value > 0) {
(bool ok,) = payTo.call{value: msg.value}("");
require (ok, "PAY_FAIL");

}

emit AccessPurchased(modelId, msg.sender, key, planId, newExpiry);

function setOwnerAccessKey(bytes32 modelId, address key) external {

}

_requireTokenOwnerByModelId (modelId) ;

require (models [modelId].pricingMode == 2, "MODE");
require (key != address(0), "KEYO");
accessExpiry[modelId] [key] = type(uint64) .max;

emit OwnerAccessKeySet (modelId, key, type(uint64).max);

function revokeAccessKey(bytes32 modelld, address key) external {

_requireTokenOwnerByModelId (modelId) ;

require (models [modelId].pricingMode == 2, "MODE");
require (key != address(0), "KEYO");
accessExpiry[modelId] [key]l = 0;

emit AccessRevoked(modelId, key);

B.3 Solidity: ForestRuntime.sol (view gating + chunk reads)

B.3.1 View inference and fee-gating rationale

61

contract ForestRuntime {

1

2 bytes4 internal constant CHUNK_MAGIC = 0x474c3143; // "GLiC"

3 IModelRegistryRuntime public immutable registry;

4 // ---- EIP-712: owner-gated view inference (no-tz) ----

5 // We cannot safely allow free view inference for paid models based on

msg.sender alone,
6 // because eth_call can spoof the caller address. Instead, the current NFT
owner Signs
// an EIP-712 message and anyone can relay it in a read-call.
8 bytes32 private constant _EIP712DOMAIN_TYPEHASH =
keccak256 ("EIP712Domain (string name,string version,uint256 chainId, address
verifyingContract)");

9 bytes32 private constant _NAME_HASH = keccak256(bytes("GenesisLl Forest"));

10 bytes32 private constant _VERSION_HASH = keccak256(bytes("1"));

11 bytes32 private constant _OWNER_VIEW_TYPEHASH = keccak256("OwnerView(bytes32
modelId,bytes32 packedHash,uint256 deadline)");

12 bytes32 private constant _ACCESS_VIEW_TYPEHASH =

keccak256 ("AccessView(bytes32 modelld,bytes32 packedHash,uint256
deadline)");

13

14

15 event Inference(bytes32 indexed modelId, address indexed caller, int256
scoreQ, uint256 valueWei) ;

16 event InferenceClass(bytes32 indexed modelld, address indexed caller, uintil6
classIndex, int256 bestScoreQ, uint256 valueWei) ;

17 // Vector-output inference (model format v2): returns logitsQ per label/class.

18 // NOTE: We emit int256[] to preserve the full accumulator range (can ezceed
int32 for many trees).

19 event InferenceMulti(bytes32 indexed modelIld, address indexed caller,
int256 [] logitsQ, uint256 valueWei);

20

21 constructor (address registryAddr) {

22 require(registryAddr != address(0), "REGO");

23 registry = IModelRegistryRuntime (registryAddr);

24 }

25

26 // Read-call inference.

27 /7

28 // IMPORTANT: If a model is configured as "patd required” (mode=2), this
function reverts.

29 // Patid inference must be performed through predictTz () so fees can be
enforced.

30 function predictView(bytes32 modelId, bytes calldata packedFeaturesQ)
external view returns (int256 scoreQ) {

31 // Read the model settings to block free inference for pay-required

models.
32 // We destructure all 13 fields for cross-solc stability (no blank tuple
slots).

33 (

34 address _tablePtr,

35 uint32 _chunkSize,

36 uint32 _numChunks,

37 uint32 _totalBytes,

38 uint1l6 _nFeatures,

39 uintl6é _nTrees,

40 uintl1l6 _depth,

41 int32 _baseq,

42 uint32 _scaleQ,

62

43
44
45

46

[S
) = O © 00 3

ot Ut
W N

S Uv ot Ot gt gt Ot
S o ud kR

D

[\

~N N
o Ol W

0 00 0 Q0 0 00 0 00 W =3 =~ =3 =1 I
O N O Utk WD ~E O © 0w C

89
90
91
92
93
94
95
96
97
98
99

bool enabled,
uint8 mode,
uint256 _feeWei,
address _recipient
) = registry.getModelRuntime (modelId);

// Silence wunused-variable warnings.
_sinkA (_tablePtr);
_sinkU(_chunkSize);
_sinkU(_numChunks) ;
_sinkU(_totalBytes);
_sinkU(_nFeatures);
_sinkU(_nTrees) ;
_sinkU(_depth);
_sinkI(_baseQ);
_sinkU(_scaleQ) ;
_sinkU(_feeWei);
_sinkA(_recipient);

require (enabled, "INF_DISABLED");
require (mode != 2, "PAID_ONLY");

scoreQ = _predict(modelId, packedFeaturesQ);
}

// Read-call inference for multiclass classification (model format wv2).

/7

// IMPORTANT: If a model %s configured as "paid required” (mode=2), this
function reverts.

// Patid inference must be performed through predictClassTz () so fees can be
enforced.

function predictClassView(bytes32 modelId, bytes calldata packedFeaturesQ)
external
view
returns (uint16 classIndex, int256 bestScoreQ)

address tablePtr,
uint32 chunkSize,
uint32 numChunks,
uint32 totalBytes,
uintl6 nFeatures,
uintl6é _nTrees,
uintl1l6 _depth,
int32 _baseQ,
uint32 _scaleQ,
bool enabled,
uint8 mode,
uint256 _feeWei,
address _recipient
) = registry.getModelRuntime (modelId) ;

// Silence unused-variable warnings.
_sinkU(_nTrees) ;

_sinkU(_depth);

_sinkI(_baseQ) ;

_sinkU(_scaleQ) ;

_sinkU(_feeWei);

_sinkA(_recipient);

63

100
101
102
103
104

105
106
107
108

109
110

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

require (enabled, "INF_DISABLED");
require (mode != 2, "PAID_ONLY");

(classIndex, bestScoreQ) = _predictClassFromChunks (modelId,
packedFeatures(Q, tablePtr, chunkSize, numChunks, totalBytes,
nFeatures) ;

}

// Read-call inference for wvector-output v2 models (multiclass/multilabel).

// For multilabel classification, the caller should apply
sigmoid (logitQ/scale) per label.

//

// IMPORTANT: If a model is configured as "patid required"” (mode=2), this
function reverts.

// Patd inference must be performed through predictMultiTz () so fees can be
enforced.

function predictMultiView (bytes32 modelId, bytes calldata packedFeaturesQ)
external
view
returns (int256[] memory logitsQ)

(
address tablePtr,
uint32 chunkSize,
uint32 numChunks,
uint32 totalBytes,
uintl6 nFeatures,
uint1l6 _nTrees,
uintl6 _depth,
int32 _baseQ,
uint32 _scaleQ,
bool enabled,
uint8 mode,
uint256 _feeWei,
address _recipient

) = registry.getModelRuntime (modellId) ;

// Silence unused-variable warnings.
_sinkU(_nTrees) ;

_sinkU(_depth);

_sinkI(_baseQ);

_sinkU(_scaleQ);

_sinkU(_feeWei);

_sinkA(_recipient);

require (enabled, "INF_DISABLED");
require (mode != 2, "PAID_ONLY");

logitsQ = _predictMultiFromChunks (modelId, packedFeaturesQ, tablePtr,
chunkSize, numChunks, totalBytes, nFeatures);

B.3.2 Chunk addressing and cross-chunk reads via EXTCODECOPY

64

15

17

18
19
20

22
23
24
25
26

28
29
30
31
32
33
34

36
37
38
39
40
41

42
43
44
45
46
47
48
49

t
o

ot gt ot ot Ot
Y O R W N

ot

function _chunkPtrAt (address tablePtr,
returns (address ptr) {

uint256 chunkIdx) internal view

// read 32-byte slot from table runtime code at offset 4 + chunkIdz*32

uint256 src = 4 + chunkIdx *x 32;
bytes32 word;
assembly ("memory-safe") {

let p := mload(0x40)

extcodecopy (tablePtr, p, src, 32)

word := mload(p)
}

ptr = address(uint160(uint256 (word)));

require (ptr != address (0),
_requireChunkMagic (ptr,
}

"BAD_PTR");
"CHUNK_CODE") ;

function _readBytes(address tablePtr, uint32 chunkSize, uint256 off, uint256

n) intermal view returns

outWord
require(n > 0 && n <= 32,
uint256 csz = uint256 (chunkSize) ;

uint256 chunkIdx = off / csz;
uint256 inChunk = off % csz;

address ptr = _chunkPtrAt(tablePtr,

// if within one chunk
if (inChunk + n <= csz) {
assembly ("memory-safe") {

"READN") ;

(bytes32 outWord) {
// reads up to 32 bytes starting at off,

returns in lowest bytes of

chunkIdx) ;

inChunk), n)

let p := mload(0x40)
extcodecopy (ptr, p, add(4,
outWord := mload(p)
}
} else {
// boundary: read first part them second part
uint256 nl = csz - inChunk;
uint256 n2 = n - nil;

bytes memory tmp = new bytes(n);

assembly ("memory-safe") {

extcodecopy (ptr, add(tmp, 32), add(4,

}

address ptr2 = _chunkPtrAt(tablePtr,

assembly ("memory-safe") {

inChunk), ni)

chunkIdx + 1);

extcodecopy (ptr2, add(add(tmp, 32), nl), 4, n2)
outWord := mload(add(tmp, 32))

function _readUl16Model (address tablePtr, uint32 chunkSize, uint256 off)

internal view returns (uintl16 v) {
bytes32 w = _readBytes(tablePtr,
uint256 b0 = uint8(bytesi(w));

uint256 bl = uint8(bytesl(w << 8));

v = uint16(b0 | (bl << 8));

65

chunkSize, off, 2);

57 function _readU8Model (address tablePtr, uint32 chunkSize, uint256 off)
internal view returmns (uint8 v) {

58 bytes32 w = _readBytes(tablePtr, chunkSize, off, 1);

59 v = uint8(bytesl(w));

60 }

61

62 function _readU32Model (address tablePtr, uint32 chunkSize, uint256 off)
internal view returms (uint32 v) {

63 bytes32 w = _readBytes(tablePtr, chunkSize, off, 4);

64 uint256 b0 = uint8(bytesl(w));

65 uint256 bl = uint8(bytesl(w << 8));

66 uint256 b2 = uint8(bytesi(w << 16));

67 uint256 b3 = uint8(bytesl(w << 24));

68 v = uint32(b0 | (bl << 8) | (b2 << 16) | (b3 << 24));

69 }

70

71 function _readI32Model (address tablePtr, uint32 chunkSize, uint256 off)
internal view returms (int32 v) {

72 bytes32 w = _readBytes(tablePtr, chunkSize, off, 4);

73 uint256 b0 = uint8(bytesl(w));

74 uint256 bl = uint8(bytesl(w << 8));

75 uint256 b2 = uint8(bytesl(w << 16));

[«

uint256 b3 = uint8(bytesl(w << 24));
uint32 u = uint32(b0 | (bl << 8) | (b2 << 16) | (b3 << 24));

~N 3
~

8 v = int32(int256 (uint256 (u))) ;

79 }

80

81

82 // ---- EIP-712 helpers ----

83 function _domainSeparatorV4() internal view returns (bytes32) {

84 return keccak256 (abi.encode(

85 _EIP712DOMAIN_TYPEHASH,

86 _NAME_HASH,

87 _VERSION_HASH,

88 block.chainid,

89 address (this)

90));

91 }

92

93 function _hashTypedDataV4 (bytes32 structHash) internal view returns (bytes32)
{

94 return keccak256 (abi.encodePacked (hex"1901", _domainSeparatorV4(),

structHash)) ;

95 }

96

97 function _recover(bytes32 digest, bytes calldata sig) internal pure returns
(address) {

98 if (sig.length != 65) return address(0);

99 bytes32 r;

100 bytes32 s;

B.4 JavaScript: train_worker.js (model serialization 4+ a tree
builder)

B.4.1 Binary formats GL1F v1 and v2 (serialization)

66

1
2
3
4
5

41

44

U OU O OU O O i B R
SR R RO Ko O

ot
~

function se
const pow
const int
const per
const tot

const out
const dv

out [0] =
out [1] =
out [2] =
out [3] =
out [4] =
out [5] =

dv.setUin
dv.setUin
dv.setUin
dv.setInt
dv.setUin
out [22] =
out [23]

let off
for (let
const t
const f
const t
const 1
for (1le
dv. se
dv.se
dv.se

}
for (le
dv.se

}

return ou

}

function se

rializeModel ({ nFeatures, depth, nTrees, baseQ, scaleQ, trees }) {

= 1 << depth;

ernal = pow - 1;

Tree = internal * 8 + pow * 4;
alBytes = 24 + nTrees * perTree;

= new Uint8Array(totalBytes);
= new DataView(out.buffer);

"G".charCodeAt (0) ;
"L".charCodeAt (0) ;
"1", charCodeAt (0) ;
"F".charCodeAt (0) ;
1;
0;

t16 (6, nFeatures, true);
t16 (8, depth, true);
t32(10, nTrees, true);
32(14, baseQ, true);

t32(18, scaleQ, true);
0;
0;
24;
t = 0; t < nTrees; t++) {
r = trees[t];
eat = tr.feat;
hr = tr.thr;
eaf = tr.leaf;
t i = 0; i < intermal; i++) {

tUint16 (off, feat[i], true); off += 2;
tInt32(off, thr[i]l, true); off += 4;
tUint16 (off, 0, true); off += 2;

t i = 0; i < pow; i++) {
tInt32(off, leaf[i]l, true); off += 4;

t;

rializeModelV2({ nFeatures, depth, nClasses,

baselLogitsQ, scaleQ, treesByClass }) {

const pow
const int
const per

const headerSize

const tot
const tot

const out
const dv

out [0]
out [1] =

= 1 << depth;
ernal = pow - 1;
Tree = intermnal * 8 + pow * 4;

24 + nClasses * 4;
alTrees = treesPerClass * nClasses;
alBytes headerSize + totalTrees * perTree;

= new Uint8Array(totalBytes);
= new DataView(out.buffer);

"G".charCodeAt (0) ;
"L".charCodeAt (0) ;

67

treesPerClass,

63
64
65
66
67

68

N D
N = O ©

~N =

S BES BENEEN BN
© WD U W

85
86
87
88
89
90
91
92
93
94
95
96

97

out [2] = "1".charCodeAt (0) ;
out [3] = "F".charCodeAt (0) ;
out [4] = 2; // wersion
out [56] = 0;
dv.setUint16 (6, nFeatures, true);
dv.setUint16 (8, depth, true);
dv.setUint32(10, treesPerClass, true);
dv.setInt32(14, 0, true); // reserwved
dv.setUint32(18, scale, true);
dv.setUint16 (22, nClasses, true);
// base logits
let off = 24;
for (let k = 0; k < nClasses; k++) {
dv.setInt32(off, baseLogitsQ[k] | 0, true);
off += 4;
}
// Trees: class-major (all trees for classO, then classli,
for (let k = 0; k < nClasses; k++) {
const clsTrees = treesByClassl[k] || [];
for (let t = 0; t < treesPerClass; t++) {
const tr = clsTrees|[t];
const feat = tr.feat;
const thr = tr.thr;
const leaf = tr.leaf;
for (let i = 0; i < intermnal; i++) {
dv.setUint16 (off, feat[i], true); off += 2;
dv.setInt32(off, thr[i], true); off += 4;
dv.setUint16 (off, 0, true); off += 2;
}
for (let i = 0; i < pow; i++) {
dv.setInt32(off, leaf[i], true); off += 4;
}
}
}
return out;
}

B.4.2 Regression tree builder (histogram/quantile thresholding)

function buildTreeRegression ({
X, nRows, nFeatures, trainSamples, residual,
featMin, featRange, depth, minLeaf, 1lr, scaleQ, rng,
bins = 32, binning = "linear", qThr = null

B {

// Split-candidate histogram binning %is training-only.

// On-chain format (tree structure + quantized thresholds/leaves) stays

unchanged.
const BINS = Math.max(8, bins | 0);
const isQuantile = String(binning || "").toLowerCase ()

const pow = 1 << depth;
const intermal = pow - 1;

68

"quantile";

21

27

v Ov Ot Ot Ot
IO

(o)
ot

ot ot Ut
co 1

at

const featUl6 = new Uintl6Array(internal);
const thrI32 = new Int32Array(internal);
const leafI32 = new Int32Array(pow);

function fillForced(nodeIdx, level, leafValQ) {
if (level === depth) {
leafI32[nodeldx - internal] = leafValQ;

return;

}
featU16 [nodeIdx] = 0;

thrI32[nodeIdx] = INT32_MAX;
fillForced(nodeIdx * 2 + 1, level + 1, leafValQ);
fillForced(nodeIdx * 2 + 2, level + 1, leafValQ);

}

function computeLeafQ(samples) {
meanResidual (residual,
1lr * m;

const m = samples) ;
const v =
return clampI32(Math.round(v * scaleQ));

}

function nodeSplit(nodeldx,
if (stopFlag) return;

level, samples) {

if (samples.length === 0) { fillForced(nodeldx,
if (level === depth) { leafI32[nodeldx - internal] =
return;

if (samples.length < 2 * minLeaf) { fillForced(nodeIdx,

computeLeafQ(samples)); return; }
const colsample = Math.max(1,
const feats = sampleFeatures(nFeatures,
let bestF = -1;

let bestThrQ = 0;

let bestSSE = Infinity;

const cnt
const sum =
const sum2 =

= new Int32Array(BINS);
new Float64Array (BINS);
new Float64Array (BINS);
for (let fi = 0; fi < feats.length; fi++) {
const f = feats[fil;

const range = featRange[f];

if (!(range > 0)) continue;

const thrArr = isQuantile ? (qThr ? qThr[f]
if (isQuantile) {
if (!thrArr ||

(thrArr.length | 0) !== (BINS

}

cnt.£fi1i11(0); sum.fill1(0); sum2.£fill(0);
featMin[f];

1 / range;

const minF =
const inv =

let totalCount =
let totalSum = 0;
let totalSum2 = O0;

0;

69

level,

null)

0); return; }
computeLeafQ (samples) ;

level,

Math.round (Math.sqrt(nFeatures)));
colsample,

rng) ;

null;

- 1)) continue;

~

72 for (let i = 0; i < samples.length; i++) {

73 const r = samples[i];

74 const x = X[r * nFeatures + f];

75 const rr = residuall[r];

76

7T let b = 0;

78 if (isQuantile) {

79 // Lower-bound: first threshold >= z. Returns [0..BINS-1].
80 let lo = 0, hi = thrArr.length;

81 while (lo < hi) {

82 const mid = (lo + hi) >> 1;

83 if (x <= thrArr[mid]) hi = mid;

84 else lo = mid + 1;

85 }

86 b = lo;

87 } else {

88 b = Math.floor(((x - minF) * inv) * BINS);

89 if (b < 0) b = 0;

90 else if (b >= BINS) b = BINS - 1;

91 }

92

93 cnt [b] += 1;

94 sum[b] += rr;

95 sum2 [b] += rr * rr;

96

97 totalCount += 1;

98 totalSum += rr;

99 totalSum2 += rr * rr;

100 }

101

102 if (totalCount < 2 * minLeaf) continue;

103

104 let leftCount = O0;

105 let leftSum = O;

106 let leftSum2 = O0;

107

108 for (let b = 0; b < BINS - 1; b++) {

109 leftCount += cnt[b];

110 leftSum += sum[b];

111 leftSum2 += sum2[b];

112

113 const rightCount = totalCount - leftCount;

114 if (leftCount < minLeaf || rightCount < minLeaf) continue;
115

116 const rightSum = totalSum - leftSum;

117 const rightSum2 = totalSum2 - leftSum2;

118

119 const 1leftSSE = leftSum2 - (leftSum * leftSum) / leftCount;
120 const rightSSE = rightSum2 - (rightSum * rightSum) / rightCount;
121 const sse = leftSSE + rightSSE;

122

123 if (sse < bestSSE) {

124 bestSSE = sse;

125 bestF = f;

126 const thrF = isQuantile ? thrArr[b] (minF + range * ((b + 1) / BINS));
127 bestThrQ = clampI32(Math.round (thrF * scaleQ));
128 }

129 }

70

130 }
131

132 if (bestF < 0) { fillForced(nodeIdx, level, computelLeafQ (samples)); return; }

133

134 const left = [];

135 const right = [];

136 for (let i = 0; i < samples.length; i++) {

137 const r = samples[i];

138 const x = X[r * nFeatures + bestF];

139 const xQ = clampI32(Math.round(x * scaleQ));

140 if (xQ > bestThrQ) right.push(r);

141 else left.push(r);

142 ¥

143

144 if (left.length < minLeaf || right.length < minLeaf) { fillForced(nodelIdx,
level, computeleafQ(samples)); return; }

145

146 featUl6[nodeIdx] = bestF;

147 thrI32[nodelIdx] = bestThrQ;

148

149 nodeSplit(nodeIdx * 2 + 1, level + 1, left);

150 nodeSplit(nodeIdx * 2 + 2, level + 1, right);

151 }

152

153 nodeSplit (0, O, Array.from(trainSamples));
154 return { feat: featU16, thr: thrI32, leaf: leafI32 };
155 3

B.5 JavaScript: create_page. js (deployment chunking and pointer-
table creation)

1 if (!trained?.bytes?.length) throw new Error("Train a model first");

if (!datasetNumeric?.featureNames?.length) throw new Error("Feature labels
missing");

if (!'iconBytes?.length) throw new Error("Upload icon");

if (!ownerKeyAddr?.value) throw new Error("Generate owner API key");

if (!ownerKeySaved?.checked) throw new Error("Confirm you saved the owner
API key private key");

6 if (!(agreeTos.checked && agreelicense.checked)) throw new Error("Agree to

Terms and License");

V]

[S J)

8 const title = metaName.value.trim();

9 const desc = metaDesc.value.trim();

10 if (title.length < 3 || desc.length < 8) throw new Error("Provide name +
description");

11 const words = titleWordHashes(title);

12 if (!words.length) throw new Error("Title should include at least one word
(2+ chars)");

13

14 const mode = Number (pricingMode.value);

15 const feeEth = clamp(pricingFee.value || "O", 0.001, 1);

16 let feeWei = On;

17 if (mode === 0) feeWei = On;

18 else feeWei = ethToWei(String(feeEth));

19

20 const { signer } = await getSignerProvider ();

71

27
28
29
30

31
32

38

t

o))
—

ot Ot Ot
SN

at

S O Ot Ot Ut Ut
_ O © e N O

62
63
64

65

67

const signerAddr = await signer.getAddress();

const store = new ethers.Contract(mustAddr(sys.store), ABI_STORE, signer);
const registry = new ethers.Contract(mustAddr(sys.registry), ABI_REGISTRY,
signer) ;

// Model bytes
const bytes = trained.bytes;
const total bytes.length;

// Read chain settings via the dedicated RPC (more reliable than wallet
provider for eth_call).

const rprov = getReadProvider (sys.rpc);
const regRead = new ethers.Contract(mustAddr(sys.registry), ABI_REGISTRY,
rprov) ;

let deployFeeWei = On;
let sizeFeeWeiPerByte = On;
let requiredFeeWei = On;
let licId = 0;
let tosVer = 0;
try { deployFeeWei = BigInt(await regRead.deployFeeWei()); } catch {}
try { sizeFeeWeiPerByte = BigInt(await regRead.sizeFeeWeiPerByte()); }
catch {}
try {
requiredFeeWei = BigInt(await regRead.requiredDeployFeeWei(total));
} catch {
requiredFeelWei

deployFeeWei + (sizeFeeWeiPerByte * BigInt(total));
}

try { licId = Number (await regRead.activelLicenseId()); } catch {}

try { tosVer = Number (await regRead.tosVersion()); } catch {}

dlog (" [${nowTs () }] Deploy fee (base): ${weiToEth(deployFeeWei)} L17);
dlog (" [${nowTs () }] Size fee: ${weiToEth(sizeFeeWeiPerByte)} L1 per byte);
dlog (" [${nowTs ()}] Required deploy value: ${weiToEth(requiredFeeWei)} L17);
dlog (" [${nowTs () }] Active licenseId=${1licId} tosVersion=${tosVerl});

let recipient = signerAddr;
if (pricingRecipient.value.trim()) recipient =
mustAddr (pricingRecipient.value.trim());

// chunking (fized)
const chunkSize = CHUNK_SIZE;
const numChunks = Math.ceil(total / chunkSize);

dlog (" [${nowTs () }] Chunking: total=${total} chunkSize=${chunkSizel} (fixed)
chunks=${numChunks} ") ;

const iface = new ethers.Interface(ABI_STORE);
const ptrs = [];

for (let i=0;i<numChunks;i++){
const start = i*xchunkSize;
const end = Math.min(total, start+chunkSize);
const chunk = bytes.slice(start,end);
dlog (" [${nowTs (O }] Chunk ${i+1}/${numChunks}: store.write(${chunk.length}
bytes) 7);
const tx = await store.write(chunk, { gasLimit: 30_000_000 1});
dlog(® tx.hash ${tx.hash});

72

73 const rcpt = await tx.wait();

74 dlog(" mined status=${rcpt.status}?
gasUsed=${rcpt.gasUsed?.toString?. () |[|"?"}");

75 if (rcpt.status !== 1) throw new Error("chunk write reverted");

76

7 let ptr = null;

78 for (const 1lg of rcpt.logs) {

79 try {

80 const pl = iface.parselog(lg);

81 if (pl?.name === "ChunkWritten") { ptr = pl.args.pointer; break; 1}

82 } catch {}

83 }

84 if (!ptr) throw new Error ("ChunkWritten not found");

85 ptrs.push(ptr);

86 dlog ("~ chunk pointer: ${ptr});

87 }

88

89 // pointer table chunk: 32 bytes each pointer

90 const table = new Uint8Array (32*numChunks) ;

91 for (let i=0;i<numChunks;i++){

92 const addr = ethers.getAddress(ptrs[i]);

93 const ab = ethers.getBytes(addr);

94 table.set(ab, i*32 + 12);

95 }

96 dlog (" [${nowTs ()}] Writing pointer-table: ${table.lengthl} bytes);

97 const ttx = await store.write(table, { gasLimit: 30_000_000 });

98 dlog ("~ table tx.hash ${ttx.hash});

99 const trc = await ttx.wait();

100 dlog(~ table mined status=${trc.status}
gasUsed=${trc.gasUsed?.toString?. () I [|"?"}) ;

101 if (trc.status !== 1) throw new Error("table write reverted");

102

103 let tablePtr = null;

104 for (const 1lg of trc.logs) {

105 try {

106 const pl = iface.parseLlog(lg);

107 if (pl?.name === "ChunkWritten") { tablePtr = pl.args.pointer; break; 1}

108 } catch {}

109 }

110 if (!'tablePtr) throw new Error("table ChunkWritten not found");

111 dlog (" [${nowTs () }] Pointer-table pointer: ${tablePtrl}’);

112

113 // Register

114 const modelld = trained.modelld;

115 let labelsForNft = null;

116 let labelNamesForNft = null;

117 if (selectedTask === "binary_classification" && datasetNumeric?.classes) {

118 // Class labels for binary classification.

119 labelsForNft = [datasetNumeric.classes[0], datasetNumeric.classes[1]];

120 } else if (selectedTask === "multiclass_classification" &&
Array.isArray(datasetNumeric?.classes)) {

121 // Class labels for multiclass classification.

122 labelsForNft = datasetNumeric.classes;

123 } else if (selectedTask === "multilabel_classification" &&
Array.isArray(datasetNumeric?.labelNames)) {

124 // Multilabel:

125 // - “labellNames are the output label names (one per selected label

column)
126 // - “labels’ are the binary class labels (defaults to 0/1)

73

127
128
129
130
131
132

134
135
136
137
138
139
140
141

labelNamesForNft = datasetNumeric.labelNames;
labelsForNft = ["O", "1"];
¥
const featuresPacked = packNftFeatures ({
task: selectedTask,
// Regression/binary/multiclass store the single label column name.
Multilabel stores labellNames instead.
labelName: (selectedTask === "multilabel_classification") 7
"(multilabel)" : datasetNumeric.labelName,
labels: labelsForNft,
labelNames: labelNamesForNft,
featureNames: datasetNumeric.featureNames

1
const depth = trained.decoded.depth;

const nTrees = trained.decoded.nTrees;
const nFeatures = trained.decoded.nFeatures;

74

Appendix C

Reproducibility Checklist

o Determinism: keep training seeds, dataset hashes, and serialization version (GL1F v1/v2)
alongside the model NFT metadata.

o Quantization: record scale and confirm no int32 overflow for feature magnitudes (Sec. 4.5).

o Bytes integrity: store and publish keccak256 (modelBytes) and (optionally) the ordered
list of chunk pointers.

o Contract addresses: pin the deployed addresses of ModelRegistry, ModelNFT, ForestRuntime,
and ModelStore.

o Inference parity: test N random feature vectors: local JS inference vs on-chain predictView/predictTx
must match bit-for-bit.

o Pricing modes: if using paid-required mode, test: (a) fee enforcement on tx, (b) owner
EIP-712 view path, and (c) access-key view path.

e License + Terms: record the accepted tosVersion and licenselId at registration time.

75

Appendix D

References

76

Bibliography

[1]

[9]

J. H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine.
The Annals of Statistics, 29(5):1189-1232, 2001. DOI: 10.1214/a0s/1013203451.
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/
Greedy-function-approximation-A-gradient-boosting-machine/10.1214/ao0s/
1013203451 . full.

T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd
ACM SIGKDD, 2016. DOI: 10.1145/2939672.2939785. https://arxiv.org/abs/1603.02754.

G. Ke et al LightGBM: A Highly Efficient Gradient Boosting De-
cision Tree. NeurIPS, 2017. https://proceedings.neurips.cc/paper/
6907-1ightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf.

Ethereum Improvement Proposals. EIP-170: Contract code size limit. https://eips.ethereun.
org/EIPS/eip-170.

Ethereum Improvement Proposals. EIP-712: Typed structured data hashing and signing.
https://eips.ethereum.org/EIPS/eip-712.

Ethereum Improvement Proposals. EIP-1474: Remote procedure call specification (eth_call
supports an optional from). https://eips.ethereum.org/EIPS/eip-1474.

OxSequence. SSTORE2: cheaper storage in contract bytecode and reads via EXTCODECOPY.
https://github.com/Oxsequence/sstore2.

Creative Commons. Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) deed. https:
//creativecommons.org/licenses/by-sa/4.0/deed.en.

Chainlist. Genesis L1 (chainld 29) network parameters. https://chainlist.org/chain/29.

77

https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boosting-machine/10.1214/aos/1013203451.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boosting-machine/10.1214/aos/1013203451.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boosting-machine/10.1214/aos/1013203451.full
https://arxiv.org/abs/1603.02754
https://proceedings.neurips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://proceedings.neurips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://eips.ethereum.org/EIPS/eip-170
https://eips.ethereum.org/EIPS/eip-170
https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-1474
https://github.com/0xsequence/sstore2
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://chainlist.org/chain/29

	I Scientific Paper
	Introduction
	What is GenesisL1 Forest?
	Why does this matter? (Importance)
	Contributions and scope

	Background
	Gradient boosting decision trees
	Why fixed-depth?
	On-chain constraints

	System Architecture
	High-level overview
	Model lifecycle

	Binary Formats and Storage
	Chunk contracts (GL1C)
	Pointer table
	Model format GL1F v1 (scalar output)
	Model format GL1F v2 (vector output)
	Why fixed-point (Q) values?

	On-Chain Inference
	Inference algorithm (scalar)
	View inference versus paid inference
	Complexity and gas intuition

	Governance, Licensing, and Search
	On-chain Terms and license
	Title-word search index

	Limitations and Future Work
	Limitations
	Possible extensions

	II Technical Documentation
	Quickstart
	Local development
	Network configuration

	End-to-End Workflow
	Dataset ingestion
	Training
	Serialization and deployment

	Contract Reference
	ModelStore
	ModelRegistry
	ForestRuntime
	ModelNFT and Marketplace

	Frontend Module Map
	Suite-Level Architecture and Navigation
	Page map and responsibilities
	System configuration model
	Wallet event bus and cross-page consistency
	Debug dock

	Forest Tab: The Model Catalog
	User-facing behavior
	Data plane: what contracts are queried
	Search and indexing
	Paging and performance considerations

	AI Store Tab: Marketplace Surface
	Listing semantics
	Query strategies
	Buy flow

	Model Tab: Inference, Pricing, and Access Control
	Model identity: tokenId vs modelId
	Feature packing and quantization
	Inference modes and pricing
	Mode 0: free view inference
	Mode 1: tips
	Mode 2: paid required

	API access keys and subscription plans
	Owner API key
	Subscriber access keys

	Owner settings and lifecycle actions

	My Tab: Portfolio View
	Create Tab: Model Studio
	Dataset sub-tab
	CSV parsing and type inference
	Label encoding per task
	Feature selection and exclusion rules
	Split preview and determinism
	Class imbalance handling
	Data Galaxy: 3D distribution and PCA

	Training sub-tab
	Exposed hyperparameters
	Model size estimate and on-chain constraints
	Training worker: isolation and responsiveness
	Learning-rate schedules
	Early stopping and final refit
	Heuristic hyperparameter search

	Local preview sub-tab
	Mint sub-tab

	Hyperparameter and Specification Reference
	Primary hyperparameters (Create->Training)
	Imbalance-handling parameters
	Fixed internal parameters

	Heuristic Search: Auto-Tuning in the Browser
	Candidate generation distribution
	Objective and selection
	Search history table and reproducibility
	Stopping and failure handling

	Feature Scoring and Interpretability
	Split usage counts
	Permutation importance on a budget
	Interpreting feature scores
	Limitations

	Terms, License, and Legal State
	Terms tab
	Debug dock revisited

	Engineering Notes and Edge Cases
	Determinism and reproducibility
	Numeric stability and scale selection
	Performance characteristics
	Security notes: signatures and deadlines

	III Appendices
	Binary Specification (Normative)
	Packed feature vectors
	Tree block (v1 and v2)

	Selected Source Excerpts (Informative)
	Solidity: ModelStore.sol (full; short)
	Solidity: ModelRegistry.sol (registration + access keys)
	Title-word AND search (for the Store UI)
	registerModel: mint NFT, bind bytes, enforce Terms + License
	Subscription access keys (paid-required models)

	Solidity: ForestRuntime.sol (view gating + chunk reads)
	View inference and fee-gating rationale
	Chunk addressing and cross-chunk reads via EXTCODECOPY

	JavaScript: train_worker.js (model serialization + a tree builder)
	Binary formats GL1F v1 and v2 (serialization)
	Regression tree builder (histogram/quantile thresholding)

	JavaScript: create_page.js (deployment chunking and pointer-table creation)

	Reproducibility Checklist
	References

